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Streszczenie

W rozdziale zaprezentowano kwantowe algorytmy hybrydowe. Pozwalaja one reali-
zowac klasyczne modele uczenia maszynowego z wykorzystaniem obwodéw kwan-
towych. Po wprowadzeniu podstawowych poje¢ przedstawiono algorytm kwantowej
sieci neuronowej, ktéry mozna wykorzysta¢ zaréowno do procesu predykcji wartosci
ciggtej, jak i w procesie klasyfikacji.
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Wprowadzenie

Wraz z dynamicznym wzrostem ilosci generowanych danych rosnie zapotrzebo-
wanie na moc obliczeniowg, umozliwiajaca przetwarzanie tych danych w skonczo-
nym czasie, oraz wspieranie podejmowania decyzji biznesowych. Pomimo postepu
technologicznego, w tym dostepu do coraz tanszego i bardziej wydajnego sprzetu,
wiele probleméw obliczeniowych wciaz pozostaje nierozwigzywalnych w rozsagdnym
czasie. Tradycyjnie wyzwania te dotyczyly gtéwnie fizyki i chemii, jednak wspotcze-
sne zastosowania biznesowe, takie jak optymalizacja i sztuczna inteligencja, réwniez
wymagaja narzedzi o ogromnej mocy obliczeniowej. Obecne komputery czgsto nie
s3 w stanie sprosta¢ tym wymaganiom. Technologig, ktéra prébuje rozwigza¢ pro-
blemy obliczeniowe klasycznych komputeréw, sa komputery kwantowe, stosowa-
ne w takich dziedzinach, jak kryptografia, symulacje fizyczne i chemiczne, uczenie
maszynowe i optymalizacja. Komputery kwantowe nie sg jeszcze maszynami, ktore
moglibysmy wykorzysta¢ do codziennych zadan. Te dostepne pozwalajg wykonywac
algorytmy i obliczenia na setkach kubitéw. Nie posiadajg jednak pelnego mechani-
zmu korekcji btedéw. Ponadto bramki muszg dziata¢ znacznie szybciej niz ich czas
dekoherencji, co uniemozliwia realizacje dtugich sekwencji bramek dla ztozonych
algorytméw. Dlatego obecny etap rozwoju tych maszyn nazywany jest erg NISQ (noisy
intermediate-scale quantum) [Preskill, 2018]. Pomimo ograniczen technologicznych
wcigz mozna wykazaé tzw. kwantowg supremacje (czyli przewage algorytméw kwan-
towych nad klasycznymi) w problemach optymalizacyjnych i w modelowaniu danych,
wykorzystujac do tego celu parametryzowane obwody kwantowe (parameterized
quantum circuits, PQCs), ktdre z zastosowaniem klasycznych optymalizatoréw moga
by¢ trenowane w celu znalezienia optymalnych wartosci dla zadanej funkcji kosztu.
Podejscie takie nazywane jest uczeniem hybrydowym. PQC realizowane s3 z uzyciem
bramek w postaci ustalonej (np. bramki CNOT). Wykorzystuja one réwniez bramki
parametryzowane, co pozwala generowac¢ nietrywialne wyniki [Lund, 2017; Harrow,
2017]. Modele kwantowego uczenia maszynowego (quantum machine learning, QML)
realizowane przez kwantowe algorytmy wariacyjne (variational quantum algorithms,
VQA) reprezentujg calg klase algorytmow, ktore uzywaja klasycznych optymalizato-
row do znalezienia parametréw kwantowych obwodéw. Szczegdlnymi realizacjami
tak zdefiniowanych modeli sg: variational quantum eigensolver [Peruzzo, 2014], varia-
tional quantum solvers [Cerezo, 2021], variational quantum classifier [Havlicek, 2019],
quantum support vector classification [Hsu, 2020], quantum neural networks [Benedetti,
2019], quantum autoencoder [Cybulski, 2024] czy tez quantum approximate optimiza-
tion algorithm, stosowane w zadaniach optymalizacyjnych typu QUBO [Farhi, 2014].
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Wszystkie tego typu algorytmy mozna realizowa¢ w bibliotekach Pythona, takich jak
IBM Qiskit, Pennylane, Cirq z wykorzystaniem prawdziwych komputeréw kwanto-
wych, udostepnianych przez dostawcéw chmurowych, typu AWS, Google Quantum
Al, Azure Quantum, IBM Q Experience, Leap (D-Wave) i wielu innych.

10.1. Modele obliczei kwantowych

Model obliczenn kwantowych znaczaco rézni si¢ od klasycznego podejscia. Aby
zrozumie¢ te réznice, wprowadzmy podstawowe pojecia i terminologie stosowang
zaréwno w obliczeniach klasycznych, jak i kwantowych.

Klasyczne komputery przetwarzaja informacje zakodowane w postaci ciggu bitow.
Kazdy bit przyjmuje jedng z dwu wartoSci: 0 lub 1. Tranzystory, bedace podstawowym
elementem wspotczesnych komputeréw, umozliwiajg zaréwno zapis informacji (utwo-
rzenie stanu poczatkowego), jak i jej odczyt (weryfikacje stanu konicowego). Proces
obliczen realizowany jest poprzez zastosowanie bramek logicznych, ktére przeksztat-
cajg stan poczatkowy bitéw w stan koficowy zgodnie z zaprogramowanymi regutami.

Teoretyczny opis dziatania klasycznych komputeréw opiera si¢ na koncepcjach
zaproponowanych przez Turinga [1950] oraz von Neumanna [1945]. Alan Turing
wprowadzit pojecie maszyny Turinga jako abstrakcyjnego modelu obliczeniowego,
ktéry moze wykona¢ dowolny algorytm, jesli zostanie odpowiednio zaprogramowa-
ny. Natomiast John von Neumann opisat architekture wspétczesnych komputeréw,
oparta na centralnym procesorze (central processing unit, CPU), pamieci oraz jed-
nostkach wejscia - wyjscia. Szczeg6towe informacje na temat dziatania komputeréw
klasycznych mozna znalez¢ w literaturze [Wong, 2022; Feynman, 2022]. Publikacje
te dostarczajg wiedzy zaréwno teoretycznej, jak i praktycznej na temat klasycznych
modeli obliczeniowych.

W obszarze obliczenh kwantowych wyrdznia sie trzy podstawowe modele, ktére
réznig sie metodami realizacji obliczen. Sg to:
= obwody kwantowe (quantum circuits), wykorzystujace bramki kwantowe do

wykonywania operacji na kubitach [Nielsen, Chuang, 2010];
= adiabatyczne obliczenia kwantowe, zaproponowane m.in. przez firme D-Wave,

pozwalajgce rozwigzywaé problemy optymalizacyjne z zastosowaniem kwanto-

wego wyzarzania [Hauke et al., 2020];
= topologiczne komputery kwantowe rozwijane m.in. przez firme Microsoft,

bazujace na zaawansowanej topologii algebraicznej oraz oferujace innowacyjne

podejscie do realizacji obliczenr kwantowych [Nayak et al., 2008].
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W niniejszej pracy skoncentrujemy sie wytacznie na modelu opartym na obwo-
dach kwantowych.

Pierwszy procesor kwantowy zostal opracowany w 1996 1. [Gershenfeld, 1996].
Urzadzenie to, bazujace na technologii magnetycznego rezonansu jadrowego (nuc-
lear magnetic resonance, NMR), wykorzystywato impulsy radiowe do realizacji bramek
kwantowych i obstugiwato dwa kubity. W 2016 r. firma IBM wprowadzita 5-kubitowy
procesor kwantowy dostepny w Srodowisku chmurowym. Obecnie, w 2025 ., dostepne
sg komputery kwantowe umozliwiajace wykonanie obliczen na ponad 1000 kubitach.

Rysunek 10.1. Schemat hybrydowego procesu obliczei kwantowych

Hybrid system

Classical computer
Forecast Pre/Post-processing
and learning algorithm

Quantum computer
~ Problem State preparation
information
and measurement
6 g
! 6

Zrédto: Benedetti [2019)].

Proces obliczenn kwantowych, zilustrowany na rysunku 10.1, wymaga wspotpracy
klasycznego komputera z procesorem kwantowym. Klasyczny komputer inicjalizuje
stan poczatkowy kubitéw za pomocg instrukeji programistycznych, definiuje konfigu-
racje bramek kwantowych, ktére realizuja dany algorytm, oraz przesyla te ustawienia
do procesora kwantowego. Procesor kwantowy przetwarza algorytm, modyfikujac stan
kubitéw zgodnie z programem. Po zakonczeniu przetwarzania kubity s mierzone,
awyniki pomiaréw przesytane z powrotem do klasycznego komputera, ktéry rejestru-
jeianalizuje dane. Proces ten mozna poréwnac¢ do dziatania procesoréw graficznych

(graphics processing unit, GPU) wykorzystywanych w zadaniach, takich jak wyznacza-
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nie parametréw sieci neuronowych. Dane wejSciowe, przedstawione w postaci macie-
rzy, s3 tadowane do karty graficznej jako bity, gdzie GPU realizuje obliczenia poprzez
operacje logiczne. Po zakoficzeniu obliczen wyniki sg odczytywane i interpretowane
przez komputer wyposazony w jednostke centralng przetwarzania.

10.2. Definicje matematyczne wykorzystywane w obliczeniach kwantowych

Kubit (quantum bit) jest podstawowym no$nikiem informacji w obliczeniach kwan-
towych. Fizycznie moze on by¢ realizowany jako dwustanowy uktad kwantowy. Stan
kubitu opisujemy jako wektor w przestrzeni Hilberta. Opis ten moze dotyczy¢ zaréw-
no pojedynczego kubitu, jaki calego zbioru kubitéw. Aby wyjasni¢ kluczowe koncep-
cje algebry liniowej stosowanej w obliczeniach kwantowych, wykorzystujemy notacje
Diraca. W tej notacji wektory sa reprezentowane przez symbole: bra,{ -[" oraz ket - )”.

Stan kubitu |y) jest opisywany za pomocg superpozycji stanéw |0>={ (1) }
i1 =[ (1) } jako wektor w postaci kolumnowej. W przypadku dwuwymiarowym

wektor ,ket” mozna zapisa¢ jako:

lo

|W>=l ao :|=O(0|0>+061|1>, (10.1)
1

gdzie o, o, € C sa liczbami zespolonymi.

Wartodci ¢, o, spetniaja wlasno$¢ unormowania

ot +ex| =1. (10.2)

Zespolone wspoétczynniki o, o, nazywamy amplitudami. Wykorzystujac unor-
mowanie 10.2 oraz fakt, iz istotne sg tylko kwadraty amplitud (interpretowane jako
prawdopodobienstwo), mozna przedstawi¢ |y) jako:

ly)y=cos g|0>+ei¢sin %1), (10.3)

gdzie 6, g e R.
Pozwala to zaprezentowac stan kubitu jako punkt na sferze Blocha.
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Rysunek 10.2. Sfera Blocha - graficzna reprezentacja stanu pojedynczego kubitu

Zrédto: opracowanie wiasne.

Wektory, bra” tworzone sg jako sprzezenie hermitowskie i transpozycja wekto-
row ket.

(wl= o 0l+a (1] 5 (wl=ly)' =[e; o] (10.4)
166

Notacja Diraca pozwala na ,wygodny zapis” dziatan na wektorach stanu, takich
jak iloczyny skalarne (y|¢) lub iloczyny tensorowe stuzgce do opisu systemow wie-
lo-kubitowych.

Dla dwdch réznych kubitéw: |y) = e, |0)+ o, |1) oraz |¢)= 5,|0)+ S,|1) iloczyn ska-
larny zdefiniowany jest jako:

W19)= o, (0[0) + o0, B, (0[1) + &, B, (1]0) + . B, (1[1) = . B, + o, B, (10.5)
Iloczyn tensorowy wyraza si¢ przez:
ly)®|¢) =0t B,|00)+x, B,|01) + e, B, |10) + e, B,[11), (10.6)
gdzie ZI‘jzo‘aiﬁj‘z =1

W przypadku n klasycznych bitéw istnieje 2" mozliwych réznych stanéw kla-
sycznych:

00..0,00..1,...,1..11. (0,1, ...,2" = 1) (10.7)
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Posiadajgc n kubitéw, mozemy utworzy¢ stan realizowany przez 2" wektoréw
bazowych i tyle samo amplitud:

|00..0),]00..1),..., |1..11), (]0),|1), ..., [2" 1)) (10.8)

n kubitéw opisuje stan naszego komputera kwantowego jako wektor jednostkowy,
nalezacy do przestrzeni generowanej iloczynem tensorowym (10.6) C*'. Obliczenia
realizowane sg zazwyczaj od przygotowania stanu podstawowego, wyrazanego jako
00..0)=]0)*". Dla uproszczenia zapisu tensorowego mozna ten stan okresli¢ jako |0).

Czesto mozna spotkac sie z opinia, ze superpozycja stanowi gtéwna przewage
komputeréw kwantowych nad klasycznymi. W rzeczywisto$ci samo istnienie superpo-
zycjinie wystarcza do rozwigzania wszystkich probleméw obliczeniowych. Kluczowym
wyzwaniem w praktycznym wykorzystaniu superpozycji jest proces pomiaru. W trak-
cie pomiaru stan kubitu nie jest bezposrednio obserwowany w postaci superpozycji,
lecz przechodziw jeden ze stanéw bazowych. Dla kubitu opisanego réwnaniem 10.8
wynikiem pomiaru moze by¢ stan |0) z prawdopodobiefistwem |e,|* lub stan |1) z praw-
dopodobienstwem |e|’. W fizyce nazywamy ten efekt kolapsem wektora stanu.

W kontekscie przetwarzania informacji mamy uktad kwantowy, ktérego stan
potrafimy przygotowac i zmierzy¢. Zostaje nam zatem opis operacji na kubitach. Do
tego celu wprowadzimy pojecie operatora liniowego. W og6lnym ujeciu operator
A dziala na stan i przeksztalca go w jaki§ inny stan (z tej samej przestrzeni).

Aly)=|9) (10.9)

W obliczeniach kwantowych bedzie interesowaé nas szczegé6lny rodzaj operato-
row zdefiniowanych przez réwnanie wlasne:

Aly,)=dly,), (10.10)

gdzie |y, ) nazywamy stanem wlasnym operatora A z warto$cig wlasng a e R.
Operator Areprezentuje dziatanie bramki kwantowej. Poniewaz kazdy kubit jest
dwuwymiarowym wektorem, bramki (dziatajace na n-kubitéw) reprezentowane beda
przez macierze unitarne M,, (C) o warto$ciach zespolonych. Wiasnos¢ unitarnosci
U'U =UUT = pozwala zachowywac prawdopodobienstwo (kwadrat normy wektora
stanu). Unitarno$¢ operatoré6w w obliczeniach kwantowych wprowadza dodatkowa,
istotng ceche bramek - ich odwracalno$¢. Przyktadem nieparametryzowanych bramek
dziatajacych najeden kubit moga by¢ macierze Pauliego czy tez bramka Hadamarda:
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o, =X= 01 , 0, =Y= 0 — ,
10 Y i 0
1 0 11 1
=7Z= , H=— 10.11
9 { 0 -1 } \/5{ 1 -1 } ( )

Tak zdefiniowany operator mozna zapisa¢ w postaci A=a|y,)(y |, gdzie q; to
warto$ci wlasne, natomiast |y, )(y,| to operatory rzutowe odpowiadajace przestrzeni
i-tego wektora wtasnego. Wynik pomiaru stanu komputera kwantowego odpowiada

jednej z warto$ci wtasnej. Obliczajac:
WAl =Y, (W)l Alv)=3 [vlv.) o= p(v)a, (10.12)

otrzymujemy warto$¢ oczekiwana operatora A w stanie |y), jesli tylko |(w|y,)|" =
= p(w,) okreslimy jako prawdopodobienstwo, ze po pomiarze nasz uklad bedzie
w stanie wlasnym |y,).

Posiadajac zestaw bramek dzialajacych na kubity, mozemy je wykorzysta¢ do
budowy obwodéw kwantowych, stanowigcych fundament realizacji algorytmoéw
kwantowych. Te obwody sktadaja sie z ciagu operacji, ktore przeksztatcajg stan

168 poczatkowy kubitéw za pomoca odwracalnych bramek kwantowych. Wykorzystanie
takich obwodéw moze tworzy¢ przewage nad klasycznymi algorytmami np. algorytm
Deutsch-Josza [1992], Grovera [1996] czy Shora [1997].

Bramki mogg by¢ zalezne od parametréw, co pozwala nam tworzy¢ parametryzo-

wane uklady kwantowe. Przyktadowe bramki przedstawia réwnanie 10.13.

6 .. 0 7] . 6
cosE —1smz cosE —smz
RO=| L2 R(0)- 2
—isin— cos— sin— cos—
2 2 2 2
_if
e 2 0
R, (6)= ) (10.13)
0 e2

Posiadajac powyzsze elementy, mozemy zrealizowac¢ model obwodéw kwantowych
z wykorzystaniem PQC, zwanych tez obwodami wariacyjnymi. Pozwala to realizowa¢
VQA w celu przyblizonego znajdowania minimum funkcji kosztu. Schemat wariacyj-

nego algorytmu kwantowego zostat przedstawiony na rysunku 10.3.
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Rysunek 10.3. Schemat wariacyjnego algorytmu kwantowego

.

Wejscie Pomiar

Wyjécie

= funkcja kosztu
= obwad wariacyjny
= parametry poczatkowe

Zrédto: opracowanie wiasne.,

10.3. Kwantowe uczenie maszynowe a sztuczna inteligencja

Postep technologiczny i powszechna cyfryzacja sprawily, ze dane staty si¢ powszech-
nym i cennym zasobem [Zajac, 2022]. Sg one generowane i przetwarzane zaréow-
no w sposoéb ustrukturyzowany, jak i nieustrukturyzowany. Strukturyzacja danych
doprowadzita do rozwoju wielu modeli, ktére dzi$ ogélnie okreslamy jako modele
uczenia maszynowego (machine learning, ML). Natomiast przetwarzanie danych nie-
ustrukturyzowanych, takich jak tekst, obrazy czy wideo, przyczynito si¢ do rozwoju
uczenia glebokiego (deep learning, DL). Oba te podejscia, czesto okreslane zbiorczo
jako sztuczna inteligencja (artificial inteligence, Al), zostaty stworzone gtéwnie do roz-
poznawania wzorcow. Jednak coraz cze$ciej wykorzystywane s rowniez do modelo-
wania i generowania nowych danych.

Klasyczny model sztucznej inteligencji mozemy wyrazi¢ jako funkcje f(x;6), ktéra
zalezy zaréwno od danych reprezentowanych przez ustrukturyzowang macierz x, jak
i od parametréw 0, ktorych wartosci zostajg ustalone w procesie uczenia.

W przypadku modeli kwantowych model uczenia maszynowego realizowany jest
jako trzyczeSciowy proces:

1. Preprocessing — pozwala zatadowaé wektor danych X do parametrycznego obwo-
du kwantowego z wykorzystaniem tzw. feature mapy, czyli funkcji ¢(x). Funkcja
ta wyrazana jest jako parametryzowany obwdéd kwantowy, opisany przez opera-
tor U,,,[0). W tym miejscu warto zwréci¢ uwagg, iz procedura ta jest podobna do
stosowania zanurzen danych nieustrukturyzowanych w sieciach neuronowych
(embedding), np. przetworzenie danych tekstowych z wykorzystaniem algoryt-
mu Word2Vec. W fazie tej bardzo waznym krokiem jest klasyczne przygotowanie
danych poprzez takie elementy, jak czyszczenie brakow danych, standaryzacja czy
tez transformacje pozwalajace otrzymaé odpowiedni rozklad zmiennej.
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2. Parametryzowany kwantowy obwdd wariacyjny - reprezentowany jest przez ope-
rator W, zalezny od wektora parametréw 6, ktéry dziata na wektor stanu przy-
gotowany przez obwod kodujacy dane WBUW)|O>. Ze wzgledu na bardzo duza
ilo$¢ kombinacji bramek, ktére mozna taczy¢ réwnolegle i szeregowo, trudno
jest wskazaé jeden konkretny obwdd pozwalajacy realizowac wszystkie proble-
my analityczne (nie ma darmowych obiad6éw). Wybor odbywa sie najczesciej
poprzez ustalenie r6znych schematéw i ich trenowania [Sim, 2019]. Poréwna¢
mozna to do klasycznych sieci neuronowych, gdzie ilos¢ warstw ukrytych, liczba
neuron6éw w kazdej warstwie czy funkcje aktywacji sg tzw. hiper-parametrami,
ktére ustala sie przez doswiadczenie. Wybrany schemat obwodéw kwantowych
okresla sie czesto mianem ansatzu.

3. Pomiar zrealizowanego obwodu - na tym etapie najczesciej estymuje si¢ zbiér
warto$ci oczekiwanych {(Ak>x‘9}::1, przyjmujacy wartosci od -1 do 1. W zalez-
nosci od realizowanego procesu mozna wykona¢ pomiar jednego lub wiekszej
ilo$ci kubitéw. Mozna réwniez generowaé wynik w postaci amplitud, prawdo-
podobienstw czy tez w postaci binarnej. Etap ten czgsto nazywany jest postpro-
cesingiem danych.

Do zakodowania informacji klasyczne komputery uzywaja bitéw (ktére moga
przyjac¢ warto$¢ 0 lub 1). Aktualnie uzywa sie systeméw, ktore kodujg znaki w postaci
32- lub 64-bitowych sekwencji. Pozwala to zakodowac wszystkie znaki z kodowania
ASCII badz Unicode. Istnieje wiele r6znych sposobéw kodowania (encode) lub zanu-
rzenia (embed) informacji w uktad n-kubitéw opisany przez stan kwantowy. Ponie-
waz chcemy uzy¢ kwantowego komputera do uczenia si¢ algorytmu na podstawie
klasycznych danych, musimy zdecydowaé, w jaki sposéb bedziemy reprezentowac
wiersz danych, a nawet caly zbi6ér danych w postaci stanu kwantowego. W tradycyj-
nym ujeciu obliczen kwantowych proces przygotowania komputera w stan poczatko-
wy nazywany jest przygotowaniem stanu (state preparation). W przypadku duzej iloSci
zmiennych mozna przeprowadzi¢ redukcje wymiaréw, wykorzystujac np. mechanizm
PCA lub inne metody opisane przez Przanowskiego [2021].

Jedna ze strategii jest tzw. kodowanie bazowe (basis encoding), ktére polega na
zamianie wektora danych wyrazonego w postaci bitowej na wektory bazowe kubitow
(0—]0)i1—|1). Chcac jednak kodowaé duzo zmiennych iz duzg precyzja poszczegdl-
nych wartosci, bedziemy zmuszeni do wykorzystania bardzo duzej ilosci kubitéw, co
dla obecnych maszyn nie jest zbyt dobrym rozwigzaniem. Kodowanie to, tak samo jak
w przypadku bitéw, pozwala realizowa¢ zaréwno liczby calkowite, jak i rzeczywiste
(dla z gory okreslonej precyzji).
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Uktad n-kubitéw moze by¢ reprezentowany jako superpozycja stanéw bazowych.

Pozwala to zakodowa¢ dane w amplitudach (amplitude encoding). Normalizujac
Xl

wektor danych x=| : |, tak by 2‘k|xk|2 =1, mozemy zakodowa¢ wszystkie x, jako
X,

amplitudy. Na przyktad x = (0,073, —0,438, 0,730, 0.000) <> |x)=0,073/00)—0,438|01)+

+0,730{10)+0[11)

W niniejszej pracy zastosujemy inne kodowanie. Poniewaz wykorzystuje ono
macierze rotacji R, (8), R, (6), R, (6) zdefiniowane w réwnaniu 10.13, kodowanie to
nazywane jest kodowaniem rotacyjnym (angle encoding). Przetwarza ono zmienne na
iloczyny i sumy funkcji cosinus i sinus. W kodowaniu tym istotne jest, aby podczas
procesu skalowania zmiennych wyskalowac¢ je do wartosci (-1,1).

N
|x)= ® cos(x,)0)+sin(x,)|1)
i=1

Informacje o pozostatych sposobach kodowania danych mozna znalez¢ w artyku-
tach Schuld, Bocharova, Svore i Wiebe’a [2021] oraz LaRose’a i Coyle’a [2020].

Analogicznie do uniwersalnego twierdzenia granicznego dla sieci neuronowych,
zawsze istnieje obwod kwantowy, ktéry moze aproksymowa¢ funkcje z dowolnie
matym btedem. W praktyce wiele wariacyjnych obwodéw kwantowych realizowa-
nych jest z ustalong strukturg bramek, co - pomimo wykladniczego wzrostu ilosci
amplitud - pozwala na zredukowanie ztozonoSci modeli poprzez malg liczbe wol-
nych do trenowania parametréw. Przy strategii ustalania szablonu bramek wyko-
rzystywanych do uczenia modelu bierze si¢ pod uwage fakt, ze dzisiejsze komputery
kwantowe wcigé bazujg na nieduzej liczbie kubitéw i mozna na nich realizowa¢ bar-
dzo rzadko potgczone bramki jedno- lub dwukubitowe. NajczeSciej wykorzystuje sie
pojedyncze bramki obrotéw jako elementy parametryzowane oraz bramki CNOT stu-
zace do generowania splatania pomiedzy poszczeg6lnymi kubitami. Zaré6wno obwo-
dy wariacyjne, jakisieci neuronowe moga by¢ traktowane jako warstwy potaczonych
sktadnikéw kontrolowanych poprzez trenowalne parametry. Prowadzi to cze¢sto do
traktowania obwodéw wariacyjnych jako kwantowych modeli sieci neuronowych.
Obwody kwantowe realizuja unitarne i jednocze$nie liniowe bramki, podczas gdy
istotng cechg sieci neuronowych jest zastosowanie nieliniowych funkcji aktywacji.
Jednym ze sposoboéw realizacji nieliniowoSci w obwodach kwantowych jest wykorzy-

stanie mechanizmu pomiaru kwantowego.
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10.4. Hybrydowy algorytm kwantowej sieci neuronowej
w procesie klasyfikacji binarnej

Ponizej przedstawiamy realizacje procesu klasyfikacji binarnej z wykorzystaniem
klasycznej sieci neuronowej oraz modelu hybrydowego, zawierajgcego klasyczne war-
stwy wejSciowe i wyjSciowe dla syntetycznie wygenerowanych danych. Dane wygene-
rowane zostaty przy pomocy funkcji pochodzacej z pakietu scikit-learn make_moons
(https:[[shorturl.at/Fjagn) z parametramin_sample = 100 oraz noise = 0,4. Sieci neuro-
nowe zrealizowano z wykorzystaniem srodowiska Python i biblioteki PyTorch. W roli
klasycznego optymalizatora zastosowano funkcje Adam z parametrem uczenia 0,01,
ajako funkcje straty — binarng entropie krzyzowa (binary cross entropy). Wszystkie mode-
le uczone byly przez 100 epok. Pierwsza sie¢ neuronowa utworzona zostata z jedna
warstwg liniowg (dwie zmienne wejSciowe i dwie wyjSciowe) wraz z funkcjg aktywa-
cji softmax. Druga sie¢ neuronowa zawiera: warstwe wejSciowa zakonczona funkcja
aktywacji Relu, warstwe ukryta zakonczona kolejng funkcjg aktywacji Relu oraz war-
stwe wyjsciowg zakonczong funkcja softmax. Trzecia sie¢ to hybrydowe polaczenie
klasycznej liniowej warstwy wejSciowej z kwantowym obwodem dwu-kubitowym,
zrealizowanym zgodnie ze schematem przedstawionym na rysunku 10.4. Schemat
warstwy kwantowej pokazany zostat na rysunku 10.5.

Schemat czwartej sieci neuronowej, ukazujacej mozliwo$¢ sktadania warstw kwan-
towych w spos6b réwnolegly, zostat zaprezentowany na rysunku 10.6.

Jako$¢ modeli przedstawiona zostata na podstawie metryki jakosci dopasowania
wynikéw (accuracy). Model klasycznej sieci bez warstw ukrytych (realizujacy proces
regresjilogistycznej) osiggnal wynik 83% na zbiorze testowym. Sie¢ z warstwami ukry-
tymi wykazala typowy problem przeszacowania (overfitting), idealnie dopasowujac sie
do danych treningowych. Jednak na zbiorze testowym osiagneta zdolnos¢ tylko 73%.
Pierwsza sie¢ kwantowa osiagneta wynik 71% na zbiorze testowym i 84% na zbiorze
treningowym. Sie¢ z warstwami kwantowymi ztozonymi réwnolegle uzyskata 73%
na zbiorze testowym i 91% na zbiorze treningowym.
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Podsumowanie

W niniejszej pracy przedstawione zostaty podstawy matematyczne modeli kwanto-
wego uczenia maszynowego oraz ich zastosowanie w problemie klasyfikacji binarne;j.
Przeanalizowano hybrydowe podej$cie bazujace na obwodach kwantowych i klasycz-
nych optymalizatorach, realizujacych warstwy ukryte klasycznej sieci neuronowe;j.
Metody wariacyjnych algorytméw kwantowych moga by¢ wykorzystywane w proble-
mach predykcyjnych oraz dla generowania nowych danych, a takze w problemach
optymalizacyjnych. Mimo zZe wcigz nie ma niezawodnego komputera kwantowego
(duzaliczba kubitéw z dlugim czasem kontroli bramek oraz peing korekcja btedow),
pozwalajacego w pelni stosowac algorytmy kwantowe, metody hybrydowe moga reali-
zowac w uproszczony (liniowy) sposéb zadanie skomplikowanych sieci neuronowych.
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