
Streszczenie
W rozdziale zaprezentowano kwantowe algorytmy hybrydowe. Pozwalają one reali-
zować klasyczne modele uczenia maszynowego z wykorzystaniem obwodów kwan-
towych. Po wprowadzeniu podstawowych pojęć przedstawiono algorytm kwantowej 
sieci neuronowej, który można wykorzystać zarówno do procesu predykcji wartości 
ciągłej, jak i w procesie klasyfikacji.
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Wprowadzenie

Wraz z dynamicznym wzrostem ilości generowanych danych rośnie zapotrzebo-
wanie na moc obliczeniową, umożliwiającą przetwarzanie tych danych w skończo-
nym czasie, oraz wspieranie podejmowania decyzji biznesowych. Pomimo postępu 
technologicznego, w tym dostępu do coraz tańszego i bardziej wydajnego sprzętu, 
wiele problemów obliczeniowych wciąż pozostaje nierozwiązywalnych w rozsądnym 
czasie. Tradycyjnie wyzwania te dotyczyły głównie fizyki i chemii, jednak współcze-
sne zastosowania biznesowe, takie jak optymalizacja i sztuczna inteligencja, również 
wymagają narzędzi o ogromnej mocy obliczeniowej. Obecne komputery często nie 
są w stanie sprostać tym wymaganiom. Technologią, która próbuje rozwiązać pro-
blemy obliczeniowe klasycznych komputerów, są komputery kwantowe, stosowa-
ne w takich dziedzinach, jak kryptografia, symulacje fizyczne i chemiczne, uczenie 
maszynowe i optymalizacja. Komputery kwantowe nie są jeszcze maszynami, które 
moglibyśmy wykorzystać do codziennych zadań. Te dostępne pozwalają wykonywać 
algorytmy i obliczenia na setkach kubitów. Nie posiadają jednak pełnego mechani-
zmu korekcji błędów. Ponadto bramki muszą działać znacznie szybciej niż ich czas 
dekoherencji, co uniemożliwia realizację długich sekwencji bramek dla złożonych 
algorytmów. Dlatego obecny etap rozwoju tych maszyn nazywany jest erą NISQ (noisy 
intermediate-scale quantum) [Preskill, 2018]. Pomimo ograniczeń technologicznych 
wciąż można wykazać tzw. kwantową supremację (czyli przewagę algorytmów kwan-
towych nad klasycznymi) w problemach optymalizacyjnych i w modelowaniu danych, 
wykorzystując do tego celu parametryzowane obwody kwantowe (parameterized 
quantum circuits, PQCs), które z zastosowaniem klasycznych optymalizatorów mogą 
być trenowane w celu znalezienia optymalnych wartości dla zadanej funkcji kosztu. 
Podejście takie nazywane jest uczeniem hybrydowym. PQC realizowane są z użyciem 
bramek w postaci ustalonej (np. bramki CNOT). Wykorzystują one również bramki 
parametryzowane, co pozwala generować nietrywialne wyniki [Lund, 2017; Harrow, 
2017]. Modele kwantowego uczenia maszynowego (quantum machine learning, QML) 
realizowane przez kwantowe algorytmy wariacyjne (variational quantum algorithms, 
VQA) reprezentują całą klasę algorytmów, które używają klasycznych optymalizato-
rów do znalezienia parametrów kwantowych obwodów. Szczególnymi realizacjami 
tak zdefiniowanych modeli są: variational quantum eigensolver [Peruzzo, 2014], varia-
tional quantum solvers [Cerezo, 2021], variational quantum classifier [Havlicek, 2019], 
quantum support vector classification [Hsu, 2020], quantum neural networks [Benedetti, 
2019], quantum autoencoder [Cybulski, 2024] czy też quantum approximate optimiza-
tion algorithm, stosowane w zadaniach optymalizacyjnych typu QUBO [Farhi, 2014]. 
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Wszystkie tego typu algorytmy można realizować w bibliotekach Pythona, takich jak 
IBM Qiskit, Pennylane, Cirq z wykorzystaniem prawdziwych komputerów kwanto-
wych, udostępnianych przez dostawców chmurowych, typu AWS, Google Quantum 
AI, Azure Quantum, IBM Q Experience, Leap (D-Wave) i wielu innych.

10.1. Modele obliczeń kwantowych

Model obliczeń kwantowych znacząco różni się od klasycznego podejścia. Aby 
zrozumieć te różnice, wprowadźmy podstawowe pojęcia i terminologię stosowaną 
zarówno w obliczeniach klasycznych, jak i kwantowych.

Klasyczne komputery przetwarzają informacje zakodowane w postaci ciągu bitów. 
Każdy bit przyjmuje jedną z dwu wartości: 0 lub 1. Tranzystory, będące podstawowym 
elementem współczesnych komputerów, umożliwiają zarówno zapis informacji (utwo-
rzenie stanu początkowego), jak i jej odczyt (weryfikację stanu końcowego). Proces 
obliczeń realizowany jest poprzez zastosowanie bramek logicznych, które przekształ-
cają stan początkowy bitów w stan końcowy zgodnie z zaprogramowanymi regułami.

Teoretyczny opis działania klasycznych komputerów opiera się na koncepcjach 
zaproponowanych przez Turinga [1950] oraz von Neumanna [1945]. Alan Turing 
wprowadził pojęcie maszyny Turinga jako abstrakcyjnego modelu obliczeniowego, 
który może wykonać dowolny algorytm, jeśli zostanie odpowiednio zaprogramowa-
ny. Natomiast John von Neumann opisał architekturę współczesnych komputerów, 
opartą na centralnym procesorze (central processing unit, CPU), pamięci oraz jed-
nostkach wejścia – wyjścia. Szczegółowe informacje na temat działania komputerów 
klasycznych można znaleźć w literaturze [Wong, 2022; Feynman, 2022]. Publikacje 
te dostarczają wiedzy zarówno teoretycznej, jak i praktycznej na temat klasycznych 
modeli obliczeniowych.

W obszarze obliczeń kwantowych wyróżnia się trzy podstawowe modele, które 
różnią się metodami realizacji obliczeń. Są to:

	§ obwody kwantowe (quantum circuits), wykorzystujące bramki kwantowe do 
wykonywania operacji na kubitach [Nielsen, Chuang, 2010];

	§ adiabatyczne obliczenia kwantowe, zaproponowane m.in. przez firmę D-Wave, 
pozwalające rozwiązywać problemy optymalizacyjne z zastosowaniem kwanto-
wego wyżarzania [Hauke et al., 2020];

	§ topologiczne komputery kwantowe rozwijane m.in. przez firmę Microsoft, 
bazujące na zaawansowanej topologii algebraicznej oraz oferujące innowacyjne 
podejście do realizacji obliczeń kwantowych [Nayak et al., 2008].
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W niniejszej pracy skoncentrujemy się wyłącznie na modelu opartym na obwo-
dach kwantowych.

Pierwszy procesor kwantowy został opracowany w 1996 r. [Gershenfeld, 1996]. 
Urządzenie to, bazujące na technologii magnetycznego rezonansu jądrowego (nuc-
lear magnetic resonance, NMR), wykorzystywało impulsy radiowe do realizacji bramek 
kwantowych i obsługiwało dwa kubity. W 2016 r. firma IBM wprowadziła 5‑kubitowy 
procesor kwantowy dostępny w środowisku chmurowym. Obecnie, w 2025 r., dostępne 
są komputery kwantowe umożliwiające wykonanie obliczeń na ponad 1000 kubitach.

Rysunek 10.1. �Schemat hybrydowego procesu obliczeń kwantowych
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Źródło: Benedetti [2019].

Proces obliczeń kwantowych, zilustrowany na rysunku 10.1, wymaga współpracy 
klasycznego komputera z procesorem kwantowym. Klasyczny komputer inicjalizuje 
stan początkowy kubitów za pomocą instrukcji programistycznych, definiuje konfigu-
rację bramek kwantowych, które realizują dany algorytm, oraz przesyła te ustawienia 
do procesora kwantowego. Procesor kwantowy przetwarza algorytm, modyfikując stan 
kubitów zgodnie z programem. Po zakończeniu przetwarzania kubity są mierzone, 
a wyniki pomiarów przesyłane z powrotem do klasycznego komputera, który rejestru-
je i analizuje dane. Proces ten można porównać do działania procesorów graficznych 
(graphics processing unit, GPU) wykorzystywanych w zadaniach, takich jak wyznacza-
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nie parametrów sieci neuronowych. Dane wejściowe, przedstawione w postaci macie-
rzy, są ładowane do karty graficznej jako bity, gdzie GPU realizuje obliczenia poprzez 
operacje logiczne. Po zakończeniu obliczeń wyniki są odczytywane i interpretowane 
przez komputer wyposażony w jednostkę centralną przetwarzania.

10.2. Definicje matematyczne wykorzystywane w obliczeniach kwantowych

Kubit (quantum bit) jest podstawowym nośnikiem informacji w obliczeniach kwan-
towych. Fizycznie może on być realizowany jako dwustanowy układ kwantowy. Stan 
kubitu opisujemy jako wektor w przestrzeni Hilberta. Opis ten może dotyczyć zarów-
no pojedynczego kubitu, jak i całego zbioru kubitów. Aby wyjaśnić kluczowe koncep-
cje algebry liniowej stosowanej w obliczeniach kwantowych, wykorzystujemy notację 
Diraca. W tej notacji wektory są reprezentowane przez symbole: bra „ ⋅ ” oraz ket „ ⋅ ”.

Stan kubitu ψ  jest opisywany za pomocą superpozycji stanów 0 = 1
0

⎡
⎣⎢

⎤
⎦⎥

  

i  1 = 0
1

⎡
⎣⎢

⎤
⎦⎥

 jako wektor w postaci kolumnowej. W przypadku dwuwymiarowym  

wektor „ket’’ można zapisać jako:

	 ψ =
α 0

α1

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
=α 0 0 +α1 1 ,	 (10.1)

gdzie α 0 , α1 ∈ C  są liczbami zespolonymi.
Wartości α 0 , α1   spełniają własność unormowania

	 α 0
2 + α1

2 =1.	 (10.2)

Zespolone współczynniki α 0 , α1 nazywamy amplitudami. Wykorzystując unor-
mowanie 10.2 oraz fakt, iż istotne są tylko kwadraty amplitud (interpretowane jako 
prawdopodobieństwo), można przedstawić ψ  jako:

	 ψ = cos θ
2
0 + eiφ sin θ

2
1 ,	 (10.3)

gdzie θ , φ ∈R.
Pozwala to zaprezentować stan kubitu jako punkt na sferze Blocha.
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Rysunek 10.2. Sfera Blocha – graficzna reprezentacja stanu pojedynczego kubitu

Źródło: opracowanie własne.

Wektory,,bra’’ tworzone są jako sprzężenie hermitowskie i transpozycja wekto-
rów ket.

	 ψ =α 0
* 0 +α1

* 1 ; ψ = ψ † = α 0
*  α1

*[ ]	 (10.4)

Notacja Diraca pozwala na „wygodny zapis” działań na wektorach stanu, takich 
jak iloczyny skalarne ψ φ  lub iloczyny tensorowe służące do opisu systemów wie-
lo-kubitowych.

Dla dwóch różnych kubitów: ψ =α 0 0 +α1 1  oraz φ = β0 0 + β1 1  iloczyn ska-
larny zdefiniowany jest jako:

	 ψ φ =α 0
*β0 0 0 +α 0

*β1 0 1 +  α1
*β0 1 0 +α1

*β1 11 =α 0
*β0 +α1

*β1 	 (10.5)

Iloczyn tensorowy wyraża się przez:

	 ψ ⊗ φ =α 0β0 00 +α 0β1 01 +α1β0 10 +α1β1 11 , 	 (10.6)

gdzie   α iβ j
2

i , j=0

1∑ = 1.

W przypadku n klasycznych bitów istnieje 2n  możliwych różnych stanów kla-
sycznych:

	 00..0,00..1,…,1..11.   0,1, …,2n −1( )	 (10.7)
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Posiadając n kubitów, możemy utworzyć stan realizowany przez 2n  wektorów 
bazowych i tyle samo amplitud:

	 00..0 , 00..1 ,…,  1..11 ,   0 ,  1 , …,  2n −1( )	 (10.8)

n kubitów opisuje stan naszego komputera kwantowego jako wektor jednostkowy, 
należący do przestrzeni generowanej iloczynem tensorowym (10.6) C2n. Obliczenia 
realizowane są zazwyczaj od przygotowania stanu podstawowego, wyrażanego jako 
00..0 = 0 ⊗n. Dla uproszczenia zapisu tensorowego można ten stan określić jako 0〉.

Często można spotkać się z opinią, że superpozycja stanowi główną przewagę 
komputerów kwantowych nad klasycznymi. W rzeczywistości samo istnienie superpo-
zycji nie wystarcza do rozwiązania wszystkich problemów obliczeniowych. Kluczowym 
wyzwaniem w praktycznym wykorzystaniu superpozycji jest proces pomiaru. W trak-
cie pomiaru stan kubitu nie jest bezpośrednio obserwowany w postaci superpozycji, 
lecz przechodzi w jeden ze stanów bazowych. Dla kubitu opisanego równaniem 10.8 
wynikiem pomiaru może być stan 0〉 z prawdopodobieństwem α 0

2 lub stan 1  z praw-
dopodobieństwem α1

2. W fizyce nazywamy ten efekt kolapsem wektora stanu.
W kontekście przetwarzania informacji mamy układ kwantowy, którego stan 

potrafimy przygotować i zmierzyć. Zostaje nam zatem opis operacji na kubitach. Do 
tego celu wprowadzimy pojęcie operatora liniowego. W ogólnym ujęciu operator 
A  działa na stan i przekształca go w jakiś inny stan (z tej samej przestrzeni).

	 Aψ = φ 	 (10.9)

W obliczeniach kwantowych będzie interesować nas szczególny rodzaj operato-
rów zdefiniowanych przez równanie własne:

	 Aψ a = aψ a ,	 (10.10)

gdzie ψ a  nazywamy stanem własnym operatora A z wartością własną a∈R .
Operator A reprezentuje działanie bramki kwantowej. Ponieważ każdy kubit jest 

dwuwymiarowym wektorem, bramki (działające na n-kubitów) reprezentowane będą 
przez macierze unitarne M 2n C( ) o wartościach zespolonych. Własność unitarności 
U †U =UU † = I   pozwala zachowywać prawdopodobieństwo (kwadrat normy wektora 
stanu). Unitarność operatorów w obliczeniach kwantowych wprowadza dodatkową, 
istotną cechę bramek – ich odwracalność. Przykładem nieparametryzowanych bramek 
działających na jeden kubit mogą być macierze Pauliego czy też bramka Hadamarda:
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σ x = X =   0 1
1 0

⎡
⎣⎢

⎤
⎦⎥
 ,  σ y = Y = 0 −i

i 0
⎡
⎣⎢

⎤
⎦⎥
 ,  σ z = Z =

1 0
0 −1

⎡
⎣⎢

⎤
⎦⎥
 ,  H =   1

2
1 1
1 −1

⎡
⎣⎢

⎤
⎦⎥

	σ x = X =   0 1
1 0

⎡
⎣⎢

⎤
⎦⎥
 ,  σ y = Y = 0 −i

i 0
⎡
⎣⎢

⎤
⎦⎥
 ,  σ z = Z =

1 0
0 −1

⎡
⎣⎢

⎤
⎦⎥
 ,  H =   1

2
1 1
1 −1

⎡
⎣⎢

⎤
⎦⎥

	 (10.11)

Tak zdefiniowany operator można zapisać w postaci A = ai ψ i ψ i , gdzie  ai  to 
wartości własne, natomiast ψ i ψ i  to operatory rzutowe odpowiadające przestrzeni 
i-tego wektora własnego. Wynik pomiaru stanu komputera kwantowego odpowiada 
jednej z wartości własnej. Obliczając:

	 ψ Aψ =
i , j∑ ψ ψ i ψ i ψ ψ i Aψ i = ψ ψ ii∑ 2

ai = p ψ i( )aii∑ 	 (10.12)

otrzymujemy wartość oczekiwaną operatora A w stanie ψ , jeśli tylko ψ ψ i
2 = p ψ i( ) 

ψ ψ i
2 = p ψ i( ) określimy jako prawdopodobieństwo, że po pomiarze nasz układ będzie 

w stanie własnym ψ i .
Posiadając zestaw bramek działających na kubity, możemy je wykorzystać do 

budowy obwodów kwantowych, stanowiących fundament realizacji algorytmów 
kwantowych. Te obwody składają się z ciągu operacji, które przekształcają stan 
początkowy kubitów za pomocą odwracalnych bramek kwantowych. Wykorzystanie 
takich obwodów może tworzyć przewagę nad klasycznymi algorytmami np. algorytm 
Deutsch-Josza [1992], Grovera [1996] czy Shora [1997].

Bramki mogą być zależne od parametrów, co pozwala nam tworzyć parametryzo-
wane układy kwantowe. Przykładowe bramki przedstawia równanie 10.13.

RX θ( ) =  
cosθ

2
−isinθ

2

−isinθ
2
cosθ

2

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

, RY θ( ) =  
cosθ

2
−sinθ

2

sinθ
2
cosθ

2

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

, RZ θ( ) =   e
− iθ

2 0

 0 ei
θ
2

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥
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2
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2
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2
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⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
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, RY θ( ) =  
cosθ

2
−sinθ

2

sinθ
2
cosθ

2

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

, RZ θ( ) =   e
− iθ

2 0

 0 ei
θ
2

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥ 	 (10.13)

Posiadając powyższe elementy, możemy zrealizować model obwodów kwantowych 
z wykorzystaniem PQC, zwanych też obwodami wariacyjnymi. Pozwala to realizować 
VQA w celu przybliżonego znajdowania minimum funkcji kosztu. Schemat wariacyj-
nego algorytmu kwantowego został przedstawiony na rysunku 10.3.
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Rysunek 10.3. Schemat wariacyjnego algorytmu kwantowego

Wejście

 funkcja kosztu
 obwód wariacyjny
 parametry początkowe

Parametry Klasyczny optymalizator

Obwód kwantowy
Wyjście

Pomiar

Pętla hybrydowa

Źródło: opracowanie własne.

10.3. Kwantowe uczenie maszynowe a sztuczna inteligencja

Postęp technologiczny i powszechna cyfryzacja sprawiły, że dane stały się powszech-
nym i cennym zasobem [Zając, 2022]. Są one generowane i przetwarzane zarów-
no w sposób ustrukturyzowany, jak i nieustrukturyzowany. Strukturyzacja danych 
doprowadziła do rozwoju wielu modeli, które dziś ogólnie określamy jako modele 
uczenia maszynowego (machine learning, ML). Natomiast przetwarzanie danych nie-
ustrukturyzowanych, takich jak tekst, obrazy czy wideo, przyczyniło się do rozwoju 
uczenia głębokiego (deep learning, DL). Oba te podejścia, często określane zbiorczo 
jako sztuczna inteligencja (artificial inteligence, AI), zostały stworzone głównie do roz-
poznawania wzorców. Jednak coraz częściej wykorzystywane są również do modelo-
wania i generowania nowych danych.

Klasyczny model sztucznej inteligencji możemy wyrazić jako funkcję f x;θ( ), która 
zależy zarówno od danych reprezentowanych przez ustrukturyzowaną macierz x, jak 
i od parametrów θ , których wartości zostają ustalone w procesie uczenia.

W przypadku modeli kwantowych model uczenia maszynowego realizowany jest 
jako trzyczęściowy proces:
1.	 Preprocessing – pozwala załadować wektor danych 

!
x  do parametrycznego obwo-

du kwantowego z wykorzystaniem tzw. feature mapy, czyli funkcji φ !x( ). Funkcja 
ta wyrażana jest jako parametryzowany obwód kwantowy, opisany przez opera-
tor Uφ !x( ) 0 . W tym miejscu warto zwrócić uwagę, iż procedura ta jest podobna do 
stosowania zanurzeń danych nieustrukturyzowanych w sieciach neuronowych 
(embedding), np. przetworzenie danych tekstowych z wykorzystaniem algoryt-
mu Word2Vec. W fazie tej bardzo ważnym krokiem jest klasyczne przygotowanie 
danych poprzez takie elementy, jak czyszczenie braków danych, standaryzacja czy 
też transformacje pozwalające otrzymać odpowiedni rozkład zmiennej.
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2.	 Parametryzowany kwantowy obwód wariacyjny – reprezentowany jest przez ope-
rator Wθ  zależny od wektora parametrów θ , który działa na wektor stanu przy-
gotowany przez obwód kodujący dane WθUφ !x( ) 0 . Ze względu na bardzo dużą 
ilość kombinacji bramek, które można łączyć równolegle i szeregowo, trudno 
jest wskazać jeden konkretny obwód pozwalający realizować wszystkie proble-
my analityczne (nie ma darmowych obiadów). Wybór odbywa się najczęściej 
poprzez ustalenie różnych schematów i ich trenowania [Sim, 2019]. Porównać 
można to do klasycznych sieci neuronowych, gdzie ilość warstw ukrytych, liczba 
neuronów w każdej warstwie czy funkcje aktywacji są tzw. hiper-parametrami, 
które ustala się przez doświadczenie. Wybrany schemat obwodów kwantowych 
określa się często mianem ansatzu.

3.	 Pomiar zrealizowanego obwodu – na tym etapie najczęściej estymuje się zbiór 
wartości oczekiwanych Ak x ,θ{ }

k=1

K
, przyjmujący wartości od −1 do 1. W zależ-

ności od realizowanego procesu można wykonać pomiar jednego lub większej 
ilości kubitów. Można również generować wynik w postaci amplitud, prawdo-
podobieństw czy też w postaci binarnej. Etap ten często nazywany jest postpro-
cesingiem danych.
Do zakodowania informacji klasyczne komputery używają bitów (które mogą 

przyjąć wartość 0 lub 1). Aktualnie używa się systemów, które kodują znaki w postaci 
32- lub 64‑bitowych sekwencji. Pozwala to zakodować wszystkie znaki z kodowania 
ASCII bądź Unicode. Istnieje wiele różnych sposobów kodowania (encode) lub zanu-
rzenia (embed) informacji w układ n-kubitów opisany przez stan kwantowy. Ponie-
waż chcemy użyć kwantowego komputera do uczenia się algorytmu na podstawie 
klasycznych danych, musimy zdecydować, w jaki sposób będziemy reprezentować 
wiersz danych, a nawet cały zbiór danych w postaci stanu kwantowego. W tradycyj-
nym ujęciu obliczeń kwantowych proces przygotowania komputera w stan początko-
wy nazywany jest przygotowaniem stanu (state preparation). W przypadku dużej ilości 
zmiennych można przeprowadzić redukcję wymiarów, wykorzystując np. mechanizm 
PCA lub inne metody opisane przez Przanowskiego [2021].

Jedną ze strategii jest tzw. kodowanie bazowe (basis encoding), które polega na 
zamianie wektora danych wyrażonego w postaci bitowej na wektory bazowe kubitów 
(0→ 0  i 1→ 1 . Chcąc jednak kodować dużo zmiennych i z dużą precyzją poszczegól-
nych wartości, będziemy zmuszeni do wykorzystania bardzo dużej ilości kubitów, co 
dla obecnych maszyn nie jest zbyt dobrym rozwiązaniem. Kodowanie to, tak samo jak 
w przypadku bitów, pozwala realizować zarówno liczby całkowite, jak i rzeczywiste 
(dla z góry określonej precyzji).
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Układ n-kubitów może być reprezentowany jako superpozycja stanów bazowych. 
Pozwala to zakodować dane w amplitudach (amplitude encoding). Normalizując 

wektor danych x =
x1
!

x2k

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

, tak by xk
2

k∑ = 1, możemy zakodować wszystkie  xk  jako 

amplitudy. Na przykład x = 0,073, −0,438, 0,730, 0.000( )  ↔   x = 0,073 00 − 0,438 01 + 0,730 10 + 0 11 
x = 0,073, −0,438, 0,730, 0.000( )  ↔   x = 0,073 00 − 0,438 01 + 0,730 10 + 0 11

W niniejszej pracy zastosujemy inne kodowanie. Ponieważ wykorzystuje ono 
macierze rotacji RX θ( ), RY θ( ), RZ θ( ) zdefiniowane w równaniu 10.13, kodowanie to 
nazywane jest kodowaniem rotacyjnym (angle encoding). Przetwarza ono zmienne na 
iloczyny i sumy funkcji cosinus i sinus. W kodowaniu tym istotne jest, aby podczas 
procesu skalowania zmiennych wyskalować je do wartości (−1,1).

x =
N
⊗
i = 1

cos xi( ) 0 + sin xi( )1

Informacje o pozostałych sposobach kodowania danych można znaleźć w artyku-
łach Schuld, Bocharova, Svore i Wiebe’a [2021] oraz LaRose’a i Coyle’a [2020].

Analogicznie do uniwersalnego twierdzenia granicznego dla sieci neuronowych, 
zawsze istnieje obwód kwantowy, który może aproksymować funkcję z dowolnie 
małym błędem. W praktyce wiele wariacyjnych obwodów kwantowych realizowa-
nych jest z ustaloną strukturą bramek, co – pomimo wykładniczego wzrostu ilości 
amplitud – pozwala na zredukowanie złożoności modeli poprzez małą liczbę wol-
nych do trenowania parametrów. Przy strategii ustalania szablonu bramek wyko-
rzystywanych do uczenia modelu bierze się pod uwagę fakt, że dzisiejsze komputery 
kwantowe wciąć bazują na niedużej liczbie kubitów i można na nich realizować bar-
dzo rzadko połączone bramki jedno- lub dwukubitowe. Najczęściej wykorzystuje się 
pojedyncze bramki obrotów jako elementy parametryzowane oraz bramki CNOT słu-
żące do generowania splątania pomiędzy poszczególnymi kubitami. Zarówno obwo-
dy wariacyjne, jak i sieci neuronowe mogą być traktowane jako warstwy połączonych 
składników kontrolowanych poprzez trenowalne parametry. Prowadzi to często do 
traktowania obwodów wariacyjnych jako kwantowych modeli sieci neuronowych. 
Obwody kwantowe realizują unitarne i jednocześnie liniowe bramki, podczas gdy 
istotną cechą sieci neuronowych jest zastosowanie nieliniowych funkcji aktywacji. 
Jednym ze sposobów realizacji nieliniowości w obwodach kwantowych jest wykorzy-
stanie mechanizmu pomiaru kwantowego.
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10.4. �Hybrydowy algorytm kwantowej sieci neuronowej  
w procesie klasyfikacji binarnej

Poniżej przedstawiamy realizację procesu klasyfikacji binarnej z wykorzystaniem 
klasycznej sieci neuronowej oraz modelu hybrydowego, zawierającego klasyczne war-
stwy wejściowe i wyjściowe dla syntetycznie wygenerowanych danych. Dane wygene-
rowane zostały przy pomocy funkcji pochodzącej z pakietu scikit-learn make_moons 
(https://shorturl.at/Fjagn) z parametrami n_sample = 100 oraz noise = 0,4. Sieci neuro-
nowe zrealizowano z wykorzystaniem środowiska Python i biblioteki PyTorch. W roli 
klasycznego optymalizatora zastosowano funkcję Adam z parametrem uczenia 0,01, 
a jako funkcje straty – binarną entropię krzyżową (binary cross entropy). Wszystkie mode-
le uczone były przez 100 epok. Pierwsza sieć neuronowa utworzona została z jedną 
warstwą liniową (dwie zmienne wejściowe i dwie wyjściowe) wraz z funkcją aktywa-
cji softmax. Druga sieć neuronowa zawiera: warstwę wejściową zakończoną funkcją 
aktywacji Relu, warstwę ukrytą zakończoną kolejną funkcją aktywacji Relu oraz war-
stwę wyjściową zakończoną funkcją softmax. Trzecia sieć to hybrydowe połączenie 
klasycznej liniowej warstwy wejściowej z kwantowym obwodem dwu-kubitowym, 
zrealizowanym zgodnie ze schematem przedstawionym na rysunku 10.4. Schemat 
warstwy kwantowej pokazany został na rysunku 10.5.

Schemat czwartej sieci neuronowej, ukazującej możliwość składania warstw kwan-
towych w sposób równoległy, został zaprezentowany na rysunku 10.6.

Jakość modeli przedstawiona została na podstawie metryki jakości dopasowania 
wyników (accuracy). Model klasycznej sieci bez warstw ukrytych (realizujący proces 
regresji logistycznej) osiągnął wynik 83% na zbiorze testowym. Sieć z warstwami ukry-
tymi wykazała typowy problem przeszacowania (overfitting), idealnie dopasowując się 
do danych treningowych. Jednak na zbiorze testowym osiągnęła zdolność tylko 73%. 
Pierwsza sieć kwantowa osiagnęła wynik 71% na zbiorze testowym i 84% na zbiorze 
treningowym. Sieć z warstwami kwantowymi złożonymi równolegle uzyskała 73% 
na zbiorze testowym i 91% na zbiorze treningowym.
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Podsumowanie

W niniejszej pracy przedstawione zostały podstawy matematyczne modeli kwanto-
wego uczenia maszynowego oraz ich zastosowanie w problemie klasyfikacji binarnej. 
Przeanalizowano hybrydowe podejście bazujące na obwodach kwantowych i klasycz-
nych optymalizatorach, realizujących warstwy ukryte klasycznej sieci neuronowej. 
Metody wariacyjnych algorytmów kwantowych mogą być wykorzystywane w proble-
mach predykcyjnych oraz dla generowania nowych danych, a także w problemach 
optymalizacyjnych. Mimo że wciąż nie ma niezawodnego komputera kwantowego 
(duża liczba kubitów z długim czasem kontroli bramek oraz pełną korekcją błędów), 
pozwalającego w pełni stosować algorytmy kwantowe, metody hybrydowe mogą reali-
zować w uproszczony (liniowy) sposób zadanie skomplikowanych sieci neuronowych.
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