
Streszczenie
Celem rozdziału jest przedstawienie konsekwencji, jakie mogą powstać w wyniku 
doszkalania dużych modeli językowych, oraz ich przykładowych miar ewaluacji. Feno-
men, który zidentyfikowano w rozdziale na przykładzie rzeczywistych danych, znany 
jest w literaturze jako problem katastrofalnego zapominania (catastrophic forgetting). 
Opisane zjawisko prowadzi do spadku jakości modelu w obszarach niezależnych od 
obszaru dotrenowanego. Celem tekstu jest wskazanie na rozwój modeli ekonometrycz-
nych, skutkujący obecnie powstaniem modeli klasy LLM oraz zwrócenie uwagi na kon-
sekwencje doszkalania tych modeli, które wpływają na ich użyteczność.
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Wprowadzenie

Pierwsze modele ekonometryczne – współcześnie często zaliczane do modeli 
uczenia maszynowego – są znane od połowy XX w. dzięki pracom Ragnara Frischa, 
laureata Nagrody Nobla z 1969 r. W swoim artykule pt. O problemie czystej ekonomii 
wskazuje on na ekonometrię jako nową dyscyplinę naukową [Frisch, 1926, s. 1]: „Na 
pograniczu matematyki, statystyki i ekonomii znajduje się nowa dyscyplina, którą 
z braku lepszej nazwy można nazwać ekonometrią. Celem ekonometrii jest poddanie 
abstrakcyjnych praw teoretycznej ekonomii politycznej lub «czystej» ekonomii eks-
perymentalnej i numerycznej weryfikacji, a tym samym przekształcenie czystej eko-
nomii, w miarę możliwości, w naukę w ścisłym tego słowa znaczeniu”.

Pierwotnie narzędziami ekonometrii były modele parametryczne, takie jak: regre-
sja liniowa [Galton, 1877], model autoregresyjny [Yule, 1926], model autoregresyj-
ny z ruchomą średnią [Kolmogorov, 1941; Wiener, 1949], regresja logistyczna [Cox, 
1958], model autoregresyjny z wektorem błędu – VAR [Sims, 1980], model korekty 
błędu – ECM [Granger, 1981], model autoregresji z heteroskedastycznością warunko-
wą – ARCH [Engle, 1982], uogólniony model autoregresji z heteroskedastycznością 
warunkową – GARCH [Bollerslev, 1986] lub model wektorowej autoregresji z wekto-
rem błędu – VECM [Granger, Newbold, 1974].

Wskazane przykłady modeli ekonometrycznych istotnie różnią się od algorytmów 
i podejść wykorzystywanych w informatyce. Klasyczne1 algorytmy IT działają według 
z góry określonych zasad, które są wprowadzane do algorytmu przez programistę 
na etapie tworzenia rozwiązania; każde działanie, operacja i decyzja uzyskane za 
pomocą rozwiązań IT są określone na podstawie instrukcji uwzględnionych w kodzie 
takiego rozwiązania [Kamiński i in., 2024]. W przypadku rozwiązań uczenia maszy-
nowego działanie, operacje i decyzje, uzyskiwane za pomocą modelu, są wypadkową 
wzorców stosowanych w procesie uczenia z wykorzystaniem danych; model posiada 
cechy adaptacyjne zależne od danych zasilających proces uczenia takiego modelu. 
Oznacza to, że narzędzia ekonometryczne uczenia maszynowego były struktural-
nie innymi podejściami od klasycznych programów lub algorytmów IT: w przypad-
ku modeli ekonometrycznych pojedynczy model był uczony na podstawie wzorców 
danych, a nie bezpośrednio definiowany przez programistę (klasyczne IT).

1	 Wskazujemy na  algorytmy, które są  tworzone przez programistów i  nie posiadają cech adaptacyj-
nych. Obecnie coraz więcej rozwiązań informatycznych posiada wbudowane mechanizmy modelu 
ekonometrycznych umożliwiających adaptacyjny charakter – te rozwiązania nie są rozumiane jako 
„klasyczne” IT.
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Wskazane wcześniej przykłady modeli ekonometrycznych należały do klasy 
modeli parametrycznych, tj. modeli, w których zdefiniowana była postać relacji mię-
dzy zmiennymi objaśniającymi a zmienną objaśnianą [Hastie, Tibshirani, Friedman, 
2009]. Na przykład model regresji liniowej odnosi się do sytuacji, w której twórca 
modelu antycypuje, że relacja między zmiennymi wprowadzanymi do modelu jest 
liniowa i zadana formułą:

Tabela 6.1. Proces generujący dane a model regresji liniowej

Założenie procesu generującego dane Przyjęta postać modelu regresji liniowej

y = Xβ + ε
gdzie: 
y to wektor wartości zmiennej objaśnianej,  
X to macierz wartości zmiennych objaśniających,  
β to wektor parametrów prawdziwych procesu generującego dane, 
a ε to składnik losowy

ŷ  = Xβ̂
gdzie: 
ŷ  to wektor oszacowań wartości zmiennej objaśnianej, 
X to macierz wartości zmiennych objaśniających,  
a β̂ to wektor oszacowanych parametrów modelu

Źródło: opracowanie własne.

W przypadku modeli parametrycznych, zakłada się „wprost” relację między zmien-
nymi objaśniającymi a zmienną objaśnianą; założenie to jest uchylone w przypadku 
modeli nieparametrycznych [Wasserman, 2006]. Modele tej klasy nie wymagają okre-
ślenia struktury relacji między zmiennymi; w przeciwieństwie do modeli parametrycz-
nych, w których struktura jest już zdefiniowana, modele nieparametryczne pozwalają 
na elastyczność w dopasowywaniu danych. Przykładami modeli nieparametrycznych 
są: metoda jądrowa [Parzen, 1962], drzewa decyzyjne [Quinlan, 1986], metoda najbliż-
szych sąsiadów [Fix, 1985], regresja splajnów [Boor, 1978], metody regresji lokalnej 
[Loader, 2006] oraz modele funkcji łączonych [Hastie, Tibshirani, 1986]. Jeden z przy-
kładów modeli nieparametrycznych stanowił model sieci neuronowych, wprowadzony 
w 1958 r. przez Franka Rosenblatta; był to model typu perceptron jako jedna z pierw-
szych sztucznych sieci neuronowych. Kolejne prace, m.in. Rumelharta, McClellanda 
i Parkera [1986], wprowadziły algorytm wstecznej propagacji błędu, umożliwiający 
efektywne trenowanie wielowarstwowych sztucznych sieci neuronowych.

Współczesnym nurtem związanym z modelami ekonometrycznymi jest rozwój 
modeli opartych na sieciach neuronowych – ich przykładem są generatywne sieci 
neuronowe, umożliwiające tworzenie nowych danych na podstawie danych histo-
rycznych, na których taka sieć była trenowana [Goodfellow i in., 2014]. Innowacją 
w zastosowaniu tych podejść jest wyjście poza czysto liczbowy przedmiot genero-
wania prognoz, tak jak w przypadku wskazanych wcześniej podejść historycznych. 
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Modele generatywnej sztucznej inteligencji umożliwiają tworzenie nowych treści, 
takich jak teksty, obrazy oraz inne formaty danych [Shanmugamani, 2018]. Obecnie 
występuje zróżnicowanie zastosowań, które dzisiaj można wpisać pod nazwę gene-
ratywnych narzędzi sztucznej inteligencji: są to zarówno generatory tekstu, takie jak 
ChatGPT, BERT, jak też mechanizmy do tworzenia kodu źródłowego np. GitHub Copi-
lot lub generowania obrazu jak DALL-E. Szczególnym przypadkiem modeli genera-
tywnych, których początek można wskazywać na lata 80., są duże modele językowe 
(large language models, LLM).

6.1. Duże modele językowe

LLM są modelami przetwarzania danych tekstowych, tzw. przetwarzania języka 
naturalnego, bazujące w dużym stopniu na strukturze transformera2 [Vaswani i in., 
2017]. Modele LLM są trenowane na szerokich zbiorach danych tekstowych, np. anglo-
języczna Wikipedia zawiera 7 mln artykułów [Rothman, 2021]. Zastosowanie tych 
modeli obejmuje obszary związane z przetwarzaniem tekstu, m.in. tworzenie nowych 
treści, rozpoznawanie mowy, generowanie streszczeń czy też przygotowanie określo-
nych szablonów tekstowych, np. formatowanie danego tekstu na podstawie podanego 
wzoru [Vajjala, Majumder, Gupta, Surana, 2020]. Modele LLM dzieli się na małe, śred-
nie i duże. Podział ten definiowany jest liczbą parametrów modelu: małe posiadają 
niespełna kilka miliardów parametrów, średnie nawet do kilkudziesięciu miliardów 
i duże opisywane są w setkach miliardów parametrów. Klasyfikację modeli LLM ze 
względu na ich wielkość przedstawiono w tabeli 6.2.

Tabela 6.2. Klasyfikacja modeli LLM ze względu na ich wielkość

Rozmiar Liczba parametrów Przykład Wymagania sprzętowe

Małe do kilku mld DistilBERT, Phi 2, GPT-Neo komputer osobisty, GPU

Średnie 10–50 mld Falcon, BloombergGPT małe serwery

Duże od 50 do setek mld Megatron-Turing NLG, GPT-4, Minerva duże serwery

Źródło: opracowanie własne.

2	 Jest to typ sieci neuronowej, która wykrywa kontekst sekwencyjnych danych i na jego podstawie gene-
ruje odpowiedź. Transformer składa się z enkodera (encoder), który ma za zadanie zrozumieć dane 
wejściowe, oraz dekodera (decoder), którego zadaniem jest wygenerowanie danych wyjściowych 
na podstawie danych uzyskanych w enkoderze.
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Podczas trenowania modeli LLM mogą wystąpić zjawiska niedostatecznego albo 
nadmiernego dopasowania danych. W przypadku dużych modeli językowych zjawi-
ska te spowodowane są rozmiarem (tj. liczbą parametrów modelu) oraz długością 
trenowania modelu (tj.  liczbą iteracji na zbiorze treningowym). Oceniając jakość 
modelu LLM na innym zbiorze danych niż zbiór danych treningowych, można się 
spodziewać, że zależność między poziomem błędu a iteracjami będzie miała kształt 
litery U; na początku trenowania błąd modelu LLM spada, przy czym od pewnego 
momentu następuje przeuczenie modelu i błąd zaczyna ponownie rosnąć. Kiedy znaj-
dzie się w punkcie będącym minimum błędu, zwiększenie liczby parametrów bądź 
iteracji będzie równoznaczne z wystąpieniem zjawiska nadmiernego dopasowania 
do danych testowych oraz zmniejszeniem dopasowania do danych populacji ogól-
nej. W rzeczywistości natomiast, zwiększając te wartości, można przekroczyć pewne 
maksimum, do którego wartość miary błędu predykcji rośnie. Następnie ta wartość 
zaczyna spadać poniżej punktu wcześniej określanego jako optymalny [Nakkiran 
i  in., 2021], będącego minimum wcześniejszego wykresu. W konsekwencji nowy 
wykres byłby w kształcie odwróconej litery N. Zjawisko to nosi nazwę podwójnego 
spadku (double descent).

Moc obliczeniowa potrzebna do trenowania dużych modeli językowych w dużym 
stopniu wynika z liczby parametrów, jakie posiadają te modele [Kaplan i in., 2020]. 
Modele LLM, które kategoryzuje się jako małe, można trenować nawet na kompu-
terach osobistych. W przypadku średnich modeli LLM, które zawierają już kilka-
dziesiąt miliardów parametrów, trenowanie powinno odbywać się na mniejszych 
serwerach. Trenowanie dużych modeli LLM wymaga natomiast ogromnych nakła-
dów finansowych, mocy obliczeniowej, którą można uzyskać tylko w dużych centrach 
danych. Na przykład wytrenowanie modelu GPT-3 kosztowało około 12 mln USD  
[Jordan, 2020].

Duże modele LLM wykorzystuje się w różnych obszarach, kontekstach, proble-
mach, takich jak: tłumaczenie tekstu, generowanie kodu źródłowego, odpowiada-
nie na pytania, podsumowanie tekstu, analiza semantyczna [Zharovskikh, 2023]. 
Modele klasy LLM wykorzystywane są m.in. w finansach do wykrywania oszustw 
lub analizy dokumentów finansowych, w prawie do sporządzania dokumentów 
oraz znajdowania luk prawnych, a w medycynie do wykrywania chorób i tworze-
nia planów leczenia.

W zależności od zadania, do którego modele będą wykorzystywane, ocenia-
ne są one przy pomocy różnych metryk ewaluacji, tj. miar oceny działania danego 
modelu. W kolejnej sekcji tekstu przedstawiono standardowe miary oceny działa-
nia modeli LLM.
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6.2. Pomiar jakości działania LLM

Nie istnieje jeden sposób pomiaru jakości działania modeli LLM [Chang i in., 2024]. 
Miary te definiowane są na podstawie obszaru działania modelu; inne miary oceny 
jakości mogą być wykorzystywane np. dla streszczeń tekstu, a inne dla generowania 
kodu źródłowego bądź tłumaczeń. Poniżej przedstawiono zestawienie najpopular-
niejszych miar oceny jakości działania modeli LLM.

6.3. Recall-Oriented Understudy for Gisting Evaluation (ROUGE)

Jednym z przykładów miar jakości działania modeli LLM jest miara Recall-Orient-
ed Understudy for Gisting Evaluation, zwana również krócej ROUGE [Lin, Chin-Yew, 
2004]. Jest to metryka służąca do oceny jakości streszczeń lub tłumaczeń wytworzo-
nych przez model LLM względem tekstu utworzonego przez człowieka [Lin, Chin-Yew, 
2004]. Wartości, jakie miara ROUGE może przyjmować, obejmują zakres: 0–1, gdzie 
0 wskazuje na całkowity brak podobieństwa tekstu, a 1 – na identyczność względem 
tekstu referencyjnego.

ROUGE jest w istocie zbiorem miar, różniących się od siebie rozmiarem n-gra-
mów3, które będą do siebie porównywane. Na przykład w przypadku ROUGE-2 porów-
nuje się bigramy (pary wyrazów). Porównując zdania: „Jan jest studentem ekonomii” 
i „Kuba jest studentem fizyki”, najpierw należy podzielić zdania na bigramy. W pierw-
szym przypadku są to: „Jan jest”, „jest studentem”, „studentem ekonomii”. Natomiast 
w drugim są to: „Kuba jest”, „jest studentem”, „studentem fizyki”. Następnie liczy się 
powtarzające się w obu przypadkach pary i dzieli przez liczbę bigramów występujących 
w tekście referencyjnym, w tym przypadku wartość ta wynosi 3. ROUGE-2 przyjmu-
je więc wartość 1/3 = 0,33. Inne miary ROUGE to ROUGE-1 i ROUGE-L, gdzie dzielimy 
najdłuższy wspólny szereg słów przez całkowitą liczbę słów w tekście referencyjnym.

6.4. Perpleksja – perplexity

Innym przykładem miary oceny jakości działania modeli LLM jest miara perplek-
sji (perplexity). Jest ona oparta na funkcji wiarygodności, umożliwiającej określenie 
prawdopodobieństwa pojawiania się danego wyrazu w kontekście danego zdania. Im 

3	 Jako n-gram rozumie się n-elementowy szereg słów ustawionych w danej kolejności, występujących 
w określonej formie odmiany.
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większa wartość, tym mniejsze prawdopodobieństwo pojawienia się danego tekstu 
(tzn. tekst jest mniej prawdopodobny).

log(PPL) =  − 1
N

log(P(ti  | cti))i=1

N∑ ,

gdzie: PPL to miara perpleksji, N oznacza rozmiar zbioru testowego, P reprezentuje 
prawdopodobieństwo, ti oznacza token „i”, dla którego obliczana jest wartość miary 
pod warunkiem poprzedzających go tokenów cti.

Poprzez token rozumie się formalną (matematyczną) reprezentację danego wyrazu4.
Poniżej przedstawiono przykład działania modelu LLM przy różnych stopniach 

jego wytrenowania. Demonstruje on, jak model językowy GPT-2 odpowiada na iden-
tyczne zapytanie przy trzech różnych poziomach wytrenowania. Doszkalanie modelu 
zostanie dokładniej omówione w kolejnej sekcji tekstu.

Pierwszym z trzech jest model surowy, którego parametry przyjmują losowe war-
tości (model bez wytrenowania). Tekst generowany przez taki model składa się z loso-
wych tokenów, tj. słów lub znaków. Jego metryka, średnia perpleksja, jest stosunkowo 
wysoka, co oznacza, że niepewność odnośnie do generowanego tekstu jest wysoka.

Następnie to samo zapytanie zostało przesłane do wytrenowanego, ogólnego 
modelu. Wygenerowany tekst składa się już z poprawnych zdań, jednak pozbawiony 
jest spójności tematycznej oraz głębszego zrozumienia kontekstu. Miara perpleksji, 
czyli miara niepewności, jest znacząco niższa, co przekłada się na tekst bardziej zgod-
ny z oczekiwaniami opartymi na danych wejściowych.

Tabela 6.3. �Przykładowe treści wygenerowane przez model GPT-2 dla modelu surowego, ogólnego 
oraz wyspecjalizowanego

Model Wyjście Średnia perpleksja

Surowy model Economics is afterlifeç gayFine Alas Alas Alasjadjadjadjadjadjad 
Madurojadjadjad

17 406

Wytrenowany ogólny model Economics is a very important field for the study of economics 3522

Wyspecjalizowany model Economics is a rich and diverse region. Inclusion of diverse economic 
and social issues in a diverse region is essential to succeed

854

Źródło: opracowanie własne.

4	 Dla przykładu słowo reading w zależności od przyjętej reprezentacji może oznaczać jeden lub kilka 
tokenów ( [„read”, „ing”] lub [„reading”]). Słowniki tokenów różnią się pomiędzy modelami języko-
wymi, stąd różnice w reprezentacji słów lub ich części.
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Ostatnie zapytanie zostało skierowane do modelu wyspecjalizowanego i doszko-
lonego (fine-tuned). W tym przypadku został on wytrenowany na ekonomicznej bazie 
danych. Tekst wygenerowany przez taki model jest bardziej złożony i spójny, a niepew-
ność w zakresie pojawiających się słów w zdaniu – mniejsza względem całego kontekstu.

6.5. Cross entropy loss

Jednym ze sposobów oceny modeli oraz monitorowania przebiegu ich treningu 
jest wykorzystanie funkcji straty (loss function). Funkcje te służą do obliczania war-
tości, zwanej stratą walidacyjną (validation loss), która mierzy utratę skuteczności 
w generowaniu odpowiedzi względem tekstów walidacyjnych. Mogą się one różnić 
w zależności od modelu czy zadania, do którego model jest trenowany. Jedna z tych 
funkcji to strata entropii krzyżowej (cross entropy loss). Funkcja wykorzystywana do 
obliczenia wartości straty ma postać:

L = 1
N i=1

N∑ − log ŷxi+1
(i) ,

gdzie: N to rozmiar zbioru testowego, a L to wartość funkcji straty.
Funkcja ta dla każdego i liczy entropię krzyżową pomiędzy przewidzianym roz-

kładem prawdopodobieństwa ŷ   i( ) a kolejnym słowem zaobserwowanym w tekście 
referencyjnym. Następnie liczona jest średnia entropia dla całego zbioru walidacyj-
nego, ale funkcja ta może także zostać użyta do obliczenia straty w zbiorze testowym 
czy treningowym.

Obliczenie wartości funkcji straty wygląda w następujący sposób: na początku 
niezbędny jest tekst, do którego model będzie porównywany. Przyjmijmy, że jest nim 
zdanie: „Jan gra w piłkę nożną”. Następnie generowany jest tekst. Podczas generowania 
powstają rozkłady prawdopodobieństwa dla każdego kolejnego słowa, z pominięciem 
pierwszego, które zostało uwzględnione w komendzie. Zakładając, że wygenerowany 
tekst brzmi: „Jan grał w piłkę ręczną”, wartość funkcji straty jest liczona, jeśli wygene-
rowane słowo nie jest tym samym co słowo w tekście referencyjnym i przyjmuje ona 
wtedy wartość ujemnego logarytmu prawdopodobieństwa wystąpienia tego słowa. 
Jeśli słowo to odpowiada słowu na tej samej pozycji w tekście referencyjnym, strata jest 
równa 0. W wygenerowanym zdaniu słowa, dla których wartość funkcji straty będzie 
różna od 0, to „Jan” i „piłkę”, ponieważ następne słowa nie odpowiadają tym referen-
cyjnym. Na koniec liczona jest średnia ze wszystkich wartości i otrzymany wynik sta-
nowi wartość funkcji straty dla całego tekstu.
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6.6. Doszkalanie LLM

Doszkalanie modelu (fine-tuning) to proces, który polega na dostosowaniu już 
wcześniej wytrenowanego modelu do specyficznego kontekstu dziedzinowego 
[Devlin i in., 2019], w którym to kontekście model będzie wykorzystywany (np. wcze-
śniej wskazywane przykłady z prawa lub medycyny). W przypadku LLM doszkalanie 
modelu polega na zmianie części jego parametrów w celu dostosowania wydajności 
do konkretnego kontekstu bez konieczności trenowania całego modelu od począt-
ku [Khandare, 2023]. Jest to szczególnie użyteczne, gdy zadanie, w ramach którego 
model ma być wykorzystywany, różni się od oryginalnego zadania, do którego został 
przeznaczony. Istnieje natomiast kilka rodzajów technik doszkalania modeli, wśród 
których można wyróżnić:

	§ całkowite doszkalanie modelu – polegające na trenowaniu całego modelu na pod-
stawie nowego zbioru danych; taki typ doszkalania wymaga znacznych nakładów 
mocy obliczeniowej oraz wystarczająco dużego zbioru danych, na podstawie któ-
rego trenowane będą wszystkie warstwy modelu;

	§ selektywne doszkalanie modelu – technika polegająca na dostrojeniu tylko 
wybranych warstw modelu, zwykle górnych lub dolnych (inaczej: początkowych 
bądź końcowych); wymaga znacznie mniejszej mocy obliczeniowej w porówna-
niu z całkowitym doszkalaniem modelu i jest używana w przypadku, gdy zadanie 
docelowe jest zbieżne z pierwotnym zadaniem ogólnego modelu;

	§ efektywne doszkalanie modelu (parameter-efficient fine-tuning, PEFT) – charakte-
ryzujące się dodaniem małej warstwy nowych parametrów w celu dostosowania 
modelu pod konkretne zadanie; pozostałe parametry pozostają niezmienne, co 
zmniejsza potrzebną moc obliczeniową;

	§ hybrydowe doszkalanie modelu – polegające na połączeniu różnych podejść 
doszkalania w celu zachowania części oryginalnych cech modelu z jednoczesnym 
dodaniem nowych; proces doszkalania dzieli się tutaj na kilka etapów, w których 
raz trenowana jest większa część parametrów, a raz mniejsza; proces ten pozwala 
na dostrojenie modelu do bardzo specyficznych zadań, nie pozbawiając go jed-
nocześnie jego podstawowych możliwości.

6.7. Przykład doszkalania LLM

W ramach badania przeprowadzony został eksperyment numeryczny, polegający 
na wykorzystaniu modelu BART opracowanego przez firmę Facebook [Lewis i in., 2019].
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Celem eksperymentu było sprawdzenie, w jaki sposób doszkalanie modelu LLM 
na wyspecjalizowanym zbiorze danych (artykuły medyczne) wpływa na jakość gene-
rowanych treści na innym ogólnym zbiorze danych (tu: zawierającym artykuły z ser-
wisu internetowego telewizji CNN).

Dane medyczne zawierały 20 tys. obserwacji w zbiorze treningowym, użytych do 
dotrenowania modelu i dodatkowych 1000 w zbiorze walidacyjnym. Składały się one 
z abstraktów biomedycznych i odpowiadających im streszczeń.

Tabela 6.4. Przykład obserwacji ze zbioru danych medycznych

Artykuł Streszczenie

„Cardiovascular disease is the leading cause of death globally. While 
pharmacological advancements have improved the morbidity and mortality 
associated with cardiovascular disease, non-adherence to prescribed 
treatment remains a significant barrier to improved…”

“Medication adherence in cardiovascular 
medicine”

Źródło: opracowanie własne.

Dane nazwane jako CNN zawierały 1000 obserwacji użytych do walidacji mode-
lu. Zbiór składał się z artykułów ukazanych w CNN i odpowiadających im streszczeń.

Tabela 6.5. Przykład obserwacji ze zbioru artykułów CNN

Artykuł Streszczenie

„The Palestinian Authority officially became the 123 rd member of the 
International Criminal Court on Wednesday, a step that gives the court 
jurisdiction over alleged crimes in Palestinian territories. The formal accession 
was marked with a ceremony at The Hague, in the Netherlands…”

“Membership gives the ICC jurisdiction over 
alleged crimes committed in Palestinian 
territories since last June…”

Źródło: opracowanie własne.

Schemat przeprowadzonego eksperymentu numerycznego przedstawiono na rysun-
ku 6.1.

W pracy zastosowano efektywne doszkalanie modelu – PEFT, przeprowadzone 
w sześciu iteracjach (epoch). Liczba parametrów modelu użytego w eksperymencie 
wynosi 139 641 600. Następnie zostało dodane 221 184 parametry, co stanowi 0,16% 
wszystkich parametrów modelu początkowego.

Średnie wartości błędów na zbiorze walidacyjnym, odpowiednio dla danych 
medycznych oraz danych CNN, uzyskane w oparciu na modelu doszkalanym na zbio-
rze medycznym, przedstawiono na rysunku 6.2 (wartości liczbowe w załączniku A).
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Rysunek 6.1. Schemat eksperymentu numerycznego

Ocena modelu na
danych CNN,

zbiór testowy

Ocena modelu na
danych medycznych,

zbiór testowy

Pierwotny
Model BART

Dane CNNDane medyczne

Dane medyczne

Model BART
doszkolony

Doszkalanie
modelu

Ocena działania

Źródło: opracowanie własne.

Rysunek 6.2. Schemat eksperymentu numerycznego
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Źródło: opracowanie własne.
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Wraz z każdą iteracją doszkalania uzyskiwano statystycznie lepszą jakość modelu 
na danych medycznych (linia ciągła na rysunku 6.2). Oznacza to, że model genero-
wał lepszej jakości tekst w kontekście medycznym, co jest zjawiskiem oczekiwanym: 
doszkalając model w oparciu na specyficznych danych medycznych, oczekujemy, że 
będzie on lepiej działał w tym konkretnym kontekście dziedzinowym.

Interesujący jest jednak profil jakości działania modelu dla danych zbioru CNN 
(linia przerywana na rysunku 6.2). Obszar ten jest w dużej mierze niezależny od 
danych medycznych, obejmując kwestie społeczne, socjologiczne, prawne i ekono-
miczne, które co do zasady są niezależnym obszarem względem medycyny5. Z każdą 
iteracją doszkalania modelu BART, w oparciu na danych medycznych, ten sam model 
wykorzystywany do analizy danych ze zbioru CNN uzyskiwał coraz wyższy błąd vali-
dation loss. Obserwowany jest statystyczny spadek jakości działania modelu w opar-
ciu na danych CNN.

Zidentyfikowana w pracy anomalia to szerzej znane w literaturze katastrofalne 
zapominanie (catastrophic forgetting), związane z sytuacją, w której model poprzez 
doszkalanie w jednym obszarze wykorzystania (tu: dane medyczne) traci dokładność 
działania w innym niezależnym obszarze (tu: dane CNN) [Kirkpatrick i in., 2017]. 
Zjawisko to jest obecne m.in. w przypadku architektur modeli opartych na sieciach 
neuronowych. Za główną przyczynę wspomnianej anomalii wskazuje się mechanizm 
dostosowywania wag modelu. Podczas doszkalania modelu w danym obszarze poten-
cjalnie wszystkie wagi modelu mogą ulegać nieznacznym modyfikacjom, co nieko-
rzystnie wpływa na jakość działania modelu na innych obszarach wykorzystania.

Podsumowanie

Rozwój ekonometrii – jak zaznaczono we wstępie, dziedziny leżącej pomiędzy 
matematyką, statystyką oraz informatyką – wiązał się na początku z paradygmatem 
modelowania parametrycznego (tj. modelami o zadanej postaci funkcyjnej), a później 
z przejściem na modele nieparametryczne. Przykładem klasy modeli nieparametrycz-
nych są sztuczne sieci neuronowe. Początkowe wykorzystanie tych modeli, skutkujące 
poprawą względem wcześniejszych podejść w obszarze jakości generowanych pro-

5	 Autorzy dostrzegają związki między kwestiami społecznymi, socjologicznymi, prawnymi lub wskaza-
niami ekonomicznymi a medycyną; niemniej dane zbioru CNN odnoszą się do kwestii medycznych 
wyłącznie powierzchownie, nie traktując tego jako głównego obszaru zainteresowań. Dla uproszczenia 
wywodu przyjęto, że zagadnienia objęte w danych CNN są niezależne od zagadnień objętych danymi 
medycznymi.
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gnoz z modeli, przyniosło dalszy rozwój i zaawansowanie wykorzystywanych podejść. 
Obecnie rozwój tego obszaru widać na przykładzie popularnych, dostępnych dla użyt-
kowników nietechnicznych, dużych modeli językowych.

Ponadto obserwujemy coraz większą popularyzację wykorzystania modeli LLM 
w wymiarze zarówno horyzontalnym: różne konteksty dziedzinowe, jak również 
wertykalnym: szczegółowe i specjalistyczne zadania do wykonywania. Jednocześnie 
budowa modelu LLM od podstaw jest z reguły ekonomicznie nieuzasadniona z punk-
tu widzenia pojedynczego przedsiębiorstwa.

Taki stan rzeczy powoduje, że przedsiębiorstwa coraz częściej wykorzystują mode-
le językowe – wytrenowane i udostępnione przez duże firmy technologiczne. W celu 
dostosowania sposobu działania tych modeli z charakteru ogólnego na wyspecjali-
zowany, dziedzinowy wypracowano szereg metod ich doszkalania.

Proces doszkalania, w zależności od rodzaju, może dotyczyć wszystkich lub wybra-
nych parametrów sieci neuronowej. Co więcej, występują podejścia (takie zastosowano 
w pracy), w których – zamiast modyfikacji istniejących parametrów – do sieci neuro-
nowej wprowadza się dodatkowe warstwy i to na nich wykonywana jest modyfikacja.

Doszkalanie modeli powoduje poprawę dokładności działania modelu w dzie-
dzinie, w której był doszkalany. W pracy wskazano jednak scenariusz, w którym obok 
poprawy dokładności działania modelu w konkretnej dziedzinie, w jakiej wykonywa-
ne było doszkalanie, zaobserwowano również pogorszenie oceny działania modeli 
w innej dziedzinie. Omawiany proces w literaturze nazywa się katastrofalnym zapo-
minaniem i związany jest z naruszeniem wartości wag modelu, odpowiadających za 
obszar, w którym model nie był doszkalany (w przykładzie były to dane CNN).

Obserwacja poczyniona w pracy dotyczy faktu, że przejście z modeli ogólnych 
na modele domenowo wyspecjalizowane, poprzez procedurę doszkalania modelu, 
może powodować nieplanowane pogorszenie działania tego modelu w obszarze nieza-
leżnym. Oznaczać to może, że wraz z postępującym doszkalaniem modelu w konkret-
nym obszarze zastosowań, model ten powinien być również wyłączany z pozostałych 
niezależnych zastosowań.
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Załącznik

Tabela Z6.1. �Strata walidacyjna modelu dotrenowanego na danych medycznych  
i ocenionego na danych medycznych

Iteracja Średnia Odchylenie standardowe Przedział ufności

1 2,20021 0,00005 0,00003

2 2,16601 0,00299 0,00185

3 2,14860 0,00220 0,00137

4 2,13749 0,00410 0,00254

5 2,13114 0,00419 0,00260

6 2,12980 0,00336 0,00208

Źródło: opracowanie własne.

Tabela Z6.2. �Strata walidacyjna modelu dotrenowanego na danych medycznych  
i ocenionego na artykułach z CNN

Iteracja Średnia Odchylenie standardowe Przedział ufności

1 3,37608 0,00459 0,00285

2 3,37384 0,00874 0,00542

3 3,37749 0,00773 0,00479

4 3,38311 0,00634 0,00393

5 3,38535 0,00701 0,00435

6 3,38530 0,00631 0,00391

Źródło: opracowanie własne.
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