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Streszczenie

Celem rozdziatu jest przedstawienie konsekwencji, jakie moga powsta¢ w wyniku
doszkalania duzych modeli jezykowych, oraz ich przyktadowych miar ewaluacji. Feno-
men, ktory zidentyfikowano w rozdziale na przyktadzie rzeczywistych danych, znany
jestw literaturze jako problem katastrofalnego zapominania (catastrophic forgetting).
Opisane zjawisko prowadzi do spadku jako$ci modelu w obszarach niezaleznych od
obszaru dotrenowanego. Celem tekstu jest wskazanie na rozwé6j modeli ekonometrycz-
nych, skutkujacy obecnie powstaniem modeli klasy LLM oraz zwr6cenie uwagi na kon-
sekwencje doszkalania tych modeli, ktore wptywajg na ich uzytecznosc.
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Wprowadzenie

Pierwsze modele ekonometryczne — wspdiczesnie czesto zaliczane do modeli
uczenia maszynowego — s3 znane od potowy XX w. dzieki pracom Ragnara Frischa,
laureata Nagrody Nobla z 1969 r. W swoim artykule pt. O problemie czystej ekonomii
wskazuje on na ekonometrie jako nowa dyscypling naukowga [Frisch, 1926, s. 1]: ,Na
pograniczu matematyki, statystyki i ekonomii znajduje si¢ nowa dyscyplina, ktorg
z braku lepszej nazwy mozna nazwac¢ ekonometrig. Celem ekonometrii jest poddanie
abstrakcyjnych praw teoretycznej ekonomii politycznej lub «czystej» ekonomii eks-
perymentalnej i numerycznej weryfikacji, a tym samym przeksztalcenie czystej eko-
nomii, w miare mozliwosci, w nauke w Scistym tego stowa znaczeniu”.

Pierwotnie narzedziami ekonometrii byty modele parametryczne, takie jak: regre-
sja liniowa [Galton, 1877], model autoregresyjny [Yule, 1926], model autoregresyj-
ny z ruchoma Srednig [Kolmogorov, 1941; Wiener, 1949], regresja logistyczna [Cox,
1958], model autoregresyjny z wektorem btedu - VAR [Sims, 1980], model korekty
btedu-ECM [Granger, 1981], model autoregresji z heteroskedastycznoscig warunko-
w3 - ARCH [Engle, 1982], uogélniony model autoregresji z heteroskedastycznoscia
warunkowa - GARCH [Bollerslev, 1986] lub model wektorowej autoregresji z wekto-
rem btedu - VECM [Granger, Newbold, 1974].

Wskazane przyktady modeli ekonometrycznych istotnie réznig sie od algorytmoéw
i podejs¢ wykorzystywanych w informatyce. Klasyczne' algorytmy IT dziatajg wedtug
z gory okreSlonych zasad, ktére s3 wprowadzane do algorytmu przez programiste
na etapie tworzenia rozwigzania; kazde dziatanie, operacja i decyzja uzyskane za
pomoca rozwigzan IT s okre$lone na podstawie instrukcji uwzglednionych w kodzie
takiego rozwigzania [Kaminski i in., 2024]. W przypadku rozwigzan uczenia maszy-
nowego dzialanie, operacje i decyzje, uzyskiwane za pomoca modelu, sg wypadkowa
wzorcow stosowanych w procesie uczenia z wykorzystaniem danych; model posiada
cechy adaptacyjne zalezne od danych zasilajacych proces uczenia takiego modelu.
Oznacza to, ze narzedzia ekonometryczne uczenia maszynowego byly struktural-
nie innymi podejSciami od klasycznych programoéw lub algorytméw IT: w przypad-
ku modeli ekonometrycznych pojedynczy model byt uczony na podstawie wzorcéw
danych, a nie bezposSrednio definiowany przez programiste (klasyczne IT).

1 Wskazujemy na algorytmy, ktére sa tworzone przez programistow i nie posiadaja cech adaptacyj-
nych. Obecnie coraz wigcej rozwigzan informatycznych posiada wbudowane mechanizmy modelu
ekonometrycznych umozliwiajacych adaptacyjny charakter - te rozwigzania nie s3 rozumiane jako
yklasyczne” IT.
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Wskazane wczes$niej przyktady modeli ekonometrycznych nalezaty do klasy
modeli parametrycznych, tj. modeli, w ktérych zdefiniowana byla postac¢ relacji mie-
dzy zmiennymi obja$niajgcymi a zmienng objasniang [Hastie, Tibshirani, Friedman,
2009]. Na przyktad model regresji liniowej odnosi si¢ do sytuacji, w ktérej twoérca
modelu antycypuje, ze relacja miedzy zmiennymi wprowadzanymi do modelu jest
liniowa i zadana formutg:

Tabela 6.1. Proces generujacy dane a model regres;ji liniowej

Zatozenie procesu generujacego dane Przyjeta postaé modelu regresii liniowej
y=XB+e j=xB
 gdzie: - gdzie:
iy to wektor warto$ci zmiennej objasnianej, y to wektor oszacowan wartosci zmiennej objasnianej,
X to macierz warto$ci zmiennych objasniajacych, ¢ X'to macierz warto$ci zmiennych objasniajacych,

3 to wektor parametrw prawdziwych procesu generujacego dane, a ﬁto wektor oszacowanych parametréw modelu
- aetosktadnik losowy :

Zrédto: opracowanie wiasne.

W przypadku modeli parametrycznych, zaktada si¢ ,wprost” relacje miedzy zmien-
nymi objasniajgcymi a zmienng objasniang; zalozenie to jest uchylone w przypadku
modeli nieparametrycznych [Wasserman, 2006]. Modele tej klasy nie wymagajg okre-
§lenia struktury relacji miedzy zmiennymi; w przeciwiefistwie do modeli parametrycz-
nych, w ktérych struktura jest juz zdefiniowana, modele nieparametryczne pozwalaja
na elastyczno$¢ w dopasowywaniu danych. Przyktadami modeli nieparametrycznych
sg:metoda jadrowa [Parzen, 1962], drzewa decyzyjne [Quinlan, 1986], metoda najbliz-
szych sasiadow [Fix, 1985], regresja splajnéw [Boor, 1978], metody regresji lokalnej
[Loader, 2006] oraz modele funkcji taczonych [Hastie, Tibshirani, 1986]. Jeden z przy-
ktadéw modeli nieparametrycznych stanowil model sieci neuronowych, wprowadzony
w 1958 . przez Franka Rosenblatta; byl to model typu perceptron jako jedna z pierw-
szych sztucznych sieci neuronowych. Kolejne prace, m.in. Rumelharta, McClellanda
i Parkera [1986], wprowadzity algorytm wstecznej propagacji btedu, umozIliwiajacy
efektywne trenowanie wielowarstwowych sztucznych sieci neuronowych.

Wspéiczesnym nurtem zwigzanym z modelami ekonometrycznymi jest rozwoj
modeli opartych na sieciach neuronowych - ich przyktadem sa generatywne sieci
neuronowe, umozliwiajgce tworzenie nowych danych na podstawie danych histo-
rycznych, na ktérych taka sie¢ byta trenowana [Goodfellow i in., 2014]. Innowacja
w zastosowaniu tych podejs¢ jest wyjScie poza czysto liczbowy przedmiot genero-
wania prognoz, tak jak w przypadku wskazanych wcze$niej podejs¢ historycznych.
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Modele generatywnej sztucznej inteligencji umozliwiajg tworzenie nowych tresci,
takich jak teksty, obrazy oraz inne formaty danych [Shanmugamani, 2018]. Obecnie
wystepuje zréznicowanie zastosowan, ktére dzisiaj mozna wpisa¢ pod nazwe gene-
ratywnych narzedzi sztucznej inteligencji: sa to zaréwno generatory tekstu, takie jak
ChatGPT, BERT, jak tez mechanizmy do tworzenia kodu Zré6dtowego np. GitHub Copi-
lot lub generowania obrazu jak DALL-E. Szczegdlnym przypadkiem modeli genera-
tywnych, ktérych poczatek mozna wskazywac na lata 80., s3 duze modele jezykowe
(large language models, LLM).

6.1. Duze modele jezykowe

LLM sg modelami przetwarzania danych tekstowych, tzw. przetwarzania jezyka
naturalnego, bazujgce w duzym stopniu na strukturze transformera® [Vaswani i in.,
2017].Modele LLM sg trenowane na szerokich zbiorach danych tekstowych, np. anglo-
jezyczna Wikipedia zawiera 7 mln artykutéw [Rothman, 2021]. Zastosowanie tych
modeli obejmuje obszary zwigzane z przetwarzaniem tekstu, m.in. tworzenie nowych
tresci, rozpoznawanie mowy, generowanie streszczen czy tez przygotowanie okreslo-
nych szablon6w tekstowych, np. formatowanie danego tekstu na podstawie podanego
wzoru [Vajjala, Majumder, Gupta, Surana, 2020]. Modele LLM dzieli si¢ na mate, Sred-
nie i duze. Podzial ten definiowany jest liczbg parametréw modelu: mate posiadaja
niespetna kilka miliardéw parametréw, srednie nawet do kilkudziesieciu miliardéw
i duze opisywane sa w setkach miliardéw parametréw. Klasyfikacje modeli LLM ze
wzgledu na ich wielko$¢ przedstawiono w tabeli 6.2.

Tabela 6.2. Klasyfikacja modeli LLM ze wzgledu na ich wielkosé

: Rozmiar Liczha parametrow Przykfad Wymagania sprzetowe
Male * dokilku mid . DiStIBERT, Phi 2, GPT-Neo  Komputer osobisty, GPU
A Srednie 10-50 mid Falcon, BloombergGPT mate serwery

Duze od 50 do setek mid Megatron-Turing NLG, GPT-4, Minerva duze serwery

Zrédto: opracowanie wiasne.

2 Jestto typ sieci neuronowej, ktéra wykrywa kontekst sekwencyjnych danych i na jego podstawie gene-
ruje odpowiedzZ. Transformer sklada si¢ z enkodera (encoder), ktéry ma za zadanie zrozumie¢ dane
wejSciowe, oraz dekodera (decoder), ktorego zadaniem jest wygenerowanie danych wyjSciowych
na podstawie danych uzyskanych w enkoderze.
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Podczas trenowania modeli LLM moga wystapi¢ zjawiska niedostatecznego albo
nadmiernego dopasowania danych. W przypadku duzych modeli jezykowych zjawi-
ska te spowodowane sa rozmiarem (tj. liczbg parametréw modelu) oraz dtugoscia
trenowania modelu (tj. liczbg iteracji na zbiorze treningowym). Oceniajac jakos¢
modelu LLM na innym zbiorze danych niz zbiér danych treningowych, mozna si¢
spodziewad, ze zaleznos¢ miedzy poziomem btedu a iteracjami bedzie miata ksztatt
litery U; na poczatku trenowania btagd modelu LLM spada, przy czym od pewnego
momentu nastepuje przeuczenie modelu i btad zaczyna ponownie rosna¢. Kiedy znaj-
dzie si¢ w punkcie bedgcym minimum btedu, zwigkszenie liczby parametréw badz
iteracji bedzie rownoznaczne z wystapieniem zjawiska nadmiernego dopasowania
do danych testowych oraz zmniejszeniem dopasowania do danych populacji ogél-
nej. W rzeczywistosci natomiast, zwigkszajac te wartosci, mozna przekroczyc¢ pewne
maksimum, do ktérego warto$¢ miary btedu predykcji rosnie. Nastepnie ta wartos¢
zaczyna spadac ponizej punktu wecze$niej okreslanego jako optymalny [Nakkiran
iin., 2021], bedacego minimum wcze$niejszego wykresu. W konsekwencji nowy
wykres bytby w ksztalcie odwréconej litery N. Zjawisko to nosi nazwe podwdjnego
spadku (double descent).

Moc obliczeniowa potrzebna do trenowania duzych modeli jezykowych w duzym
stopniu wynika z liczby parametréw, jakie posiadajg te modele [Kaplan i in., 2020].
Modele LLM, ktére kategoryzuje si¢ jako mate, mozna trenowaé nawet na kompu-
terach osobistych. W przypadku srednich modeli LLM, ktére zawierajg juz kilka-
dziesigt miliardéw parametréw, trenowanie powinno odbywac sie na mniejszych
serwerach. Trenowanie duzych modeli LLM wymaga natomiast ogromnych nakta-
déw finansowych, mocy obliczeniowej, ktérg mozna uzyskac tylko w duzych centrach
danych. Na przyktad wytrenowanie modelu GPT-3 kosztowato okoto 12 mIn USD
[Jordan, 2020].

Duze modele LLM wykorzystuje sie w réznych obszarach, kontekstach, proble-
mach, takich jak: ttumaczenie tekstu, generowanie kodu zrédtowego, odpowiada-
nie na pytania, podsumowanie tekstu, analiza semantyczna [Zharovskikh, 2023].
Modele klasy LLM wykorzystywane s3 m.in. w finansach do wykrywania oszustw
lub analizy dokumentéw finansowych, w prawie do sporzadzania dokumentéw
oraz znajdowania luk prawnych, a w medycynie do wykrywania choréb i tworze-
nia planéw leczenia.

W zaleznosci od zadania, do ktérego modele beda wykorzystywane, ocenia-
ne sg one przy pomocy réznych metryk ewaluacji, tj. miar oceny dziatania danego
modelu. W kolejnej sekcji tekstu przedstawiono standardowe miary oceny dziata-
nia modeli LLM.

Czesc Il. Technologie, dane i analityka sztucznej inteligenciji



WYZWANIA ZWIAZANE Z DOSZKALANIEM DUZYCH MODELI JEZYKOWYCH
PERSPEKTYWA EKONOMETRII

6.2. Pomiar jakosci dziatania LLM

Nie istnieje jeden spos6b pomiaru jako$ci dziatania modeli LLM [Changiin., 2024].
Miary te definiowane s3 na podstawie obszaru dziatania modelu; inne miary oceny
jakosci mogg by¢ wykorzystywane np. dla streszczen tekstu, a inne dla generowania
kodu Zrédtowego badz ttumaczen. Ponizej przedstawiono zestawienie najpopular-
niejszych miar oceny jakoS$ci dziatania modeli LLM.

6.3. Recall-Oriented Understudy for Gisting Evaluation (ROUGE)

Jednym z przyktadéw miar jakosci dziatania modeli LLM jest miara Recall-Orient-
ed Understudy for Gisting Evaluation, zwana réwniez krécej ROUGE [Lin, Chin-Yew,
2004]. Jest to metryka stuzaca do oceny jakosci streszczen lub thtumaczen wytworzo-
nych przez model LLM wzgledem tekstu utworzonego przez cztowieka [Lin, Chin-Yew,
2004]. Wartosci, jakie miara ROUGE moze przyjmowac, obejmuja zakres: 0-1, gdzie
0 wskazuje na catkowity brak podobiefistwa tekstu, a 1 - na identyczno$¢ wzgledem
tekstu referencyjnego.

ROUGE jest w istocie zbiorem miar, ré6znigcych si¢ od siebie rozmiarem n-gra-
mo6w’, ktore beda do siebie poréwnywane. Na przyktad w przypadku ROUGE-2 poréw-
nuje sie bigramy (pary wyrazéw). Poréwnujac zdania: ,Jan jest studentem ekonomii”
i,Kuba jest studentem fizyki”, najpierw nalezy podzieli¢ zdania na bigramy. W pierw-
szym przypadku sg to:,Jan jest”, ,jest studentem”, ,studentem ekonomii”. Natomiast
w drugim sg to: ,,Kuba jest”, ,jest studentem”, ,studentem fizyki”. Nastepnie liczy si¢
powtarzajace si¢ w obu przypadkach paryidzieli przez liczbe bigraméw wystepujacych
w tekscie referencyjnym, w tym przypadku wartos¢ ta wynosi 3. ROUGE-2 przyjmu-
je wiec warto$¢ 1/3=0,33. Inne miary ROUGE to ROUGE-1 i ROUGE-L, gdzie dzielimy
najdtuzszy wspolny szereg stow przez catkowit liczbe stow w tekscie referencyjnym.

6.4. Perpleksja - perplexity

Innym przyktadem miary oceny jakosci dziatania modeli LLM jest miara perplek-
sji (perplexity). Jest ona oparta na funkcji wiarygodnosci, umozliwiajacej okreslenie
prawdopodobiefistwa pojawiania si¢ danego wyrazu w kontekscie danego zdania. Im

3 Jako n-gram rozumie si¢ n-elementowy szereg stow ustawionych w danej kolejnosci, wystepujacych
w okreslonej formie odmiany.
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wigksza warto$¢, tym mniejsze prawdopodobiefistwo pojawienia sie danego tekstu
(tzn. tekst jest mniej prawdopodobny).

log(PPL) =~ 3" log(P(t, | ¢,),

gdzie: PPL to miara perpleksji, N oznacza rozmiar zbioru testowego, P reprezentuje
prawdopodobienstwo, t; oznacza token ,i”, dla ktérego obliczana jest warto$¢ miary
pod warunkiem poprzedzajgcych go tokenow c, .

Poprzez token rozumie sie formalng (matematyczna) reprezentacje danego wyrazu®,

Ponizej przedstawiono przyktad dziatania modelu LLM przy r6znych stopniach
jego wytrenowania. Demonstruje on, jak model jezykowy GPT-2 odpowiada na iden-
tyczne zapytanie przy trzech réznych poziomach wytrenowania. Doszkalanie modelu
zostanie dokladniej oméwione w kolejnej sekcji tekstu.

Pierwszym z trzech jest model surowy, ktérego parametry przyjmuja losowe war-
to$ci (model bez wytrenowania). Tekst generowany przez taki model sktada si¢ z loso-
wych tokendw, tj. stow lub znakéw. Jego metryka, Srednia perpleksja, jest stosunkowo
wysoka, co oznacza, ze niepewno$¢ odnosnie do generowanego tekstu jest wysoka.

Nastepnie to samo zapytanie zostato przestane do wytrenowanego, ogélnego
modelu. Wygenerowany tekst sktada sie juz z poprawnych zdan, jednak pozbawiony
jest spéjnosci tematycznej oraz glebszego zrozumienia kontekstu. Miara perpleksji,
czyli miara niepewnosci, jest znaczgco nizsza, co przektada sie na tekst bardziej zgod-
ny z oczekiwaniami opartymi na danych wejSciowych.

Tabela 6.3. Przyktadowe tresci wygenerowane przez model GPT-2 dla modelu surowego, ogéinego
oraz wyspecijalizowanego

: Model Wyjscie Srednia perpleksja
Surowy model Economics is afterlifec gayFine Alas Alas Alasjadjadjadjadjadjad 17 406
Madurojadjadjad

Wytrenowany ogélny model Economics is a very important field for the study of economics 3522
Wyspecjalizowany model Economics is a rich and diverse region. Inclusion of diverse economic 804

: and social issues in a diverse region is essential to succeed

Zrédto: opracowanie wiasne.,

4 Dla przyktadu stowo reading w zaleznosci od przyjetej reprezentacji moze oznacza¢ jeden lub kilka
tokenéw ( [,read”, ,ing”] lub [,reading”]). Stowniki tokenéw r6znia si¢ pomiedzy modelami jezyko-
wymi, stad réznice w reprezentacji stéw lub ich czesci.
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Ostatnie zapytanie zostalo skierowane do modelu wyspecjalizowanego i doszko-
lonego (fine-tuned). W tym przypadku zostal on wytrenowany na ekonomicznej bazie
danych. Tekst wygenerowany przez taki model jest bardziej ztozony i spéjny, a niepew-
nos¢ w zakresie pojawiajacych sie stow w zdaniu - mniejsza wzgledem catego kontekstu.

6.5. Cross entropy loss

Jednym ze sposobéw oceny modeli oraz monitorowania przebiegu ich treningu
jest wykorzystanie funkgcji straty (loss function). Funkcje te stuzg do obliczania war-
tosci, zwanej stratg walidacyjna (validation loss), ktéra mierzy utrate skutecznosci
w generowaniu odpowiedzi wzgledem tekstéw walidacyjnych. Moga sie one rézni¢
w zalezno$ci od modelu czy zadania, do ktérego model jest trenowany. Jedna z tych
funkcji to strata entropii krzyzowej (cross entropy loss). Funkcja wykorzystywana do
obliczenia warto$ci straty ma postac:

_Llyw 0
L_ Nziﬂ_log‘y"m’

gdzie: N to rozmiar zbioru testowego, a L to warto$¢ funkeji straty.

Funkcja ta dla kazdego i liczy entropie krzyzowa pomiedzy przewidzianym roz-
ktadem prawdopodobienistwa y@ a kolejnym stowem zaobserwowanym w tekscie
referencyjnym. Nastepnie liczona jest Srednia entropia dla catego zbioru walidacyj-
nego, ale funkcja ta moze takze zosta¢ uzyta do obliczenia straty w zbiorze testowym
czy treningowym.

Obliczenie wartosci funkcji straty wyglada w nastepujacy sposéb: na poczatku
niezbedny jest tekst, do ktérego model bedzie poréwnywany. Przyjmijmy, ze jest nim
zdanie: ,Jan gra w pitke nozna”. Nastepnie generowany jest tekst. Podczas generowania
powstaja rozklady prawdopodobienstwa dla kazdego kolejnego stowa, z pominigciem
pierwszego, ktére zostato uwzglednione w komendzie. Zaktadajac, ze wygenerowany
tekst brzmi: ,Jan grat w pitke reczng”, wartos¢ funkeji straty jest liczona, jesli wygene-
rowane stowo nie jest tym samym co stowo w tekscie referencyjnym i przyjmuje ona
wtedy wartos¢ ujemnego logarytmu prawdopodobienstwa wystapienia tego stowa.
Jesli stowo to odpowiada stowu na tej samej pozycji w tekScie referencyjnym, strata jest
rowna 0. W wygenerowanym zdaniu stowa, dla ktérych wartos¢ funkcji straty bedzie
réznaod 0, to,Jan” i, pitke”, poniewaz nastepne stowa nie odpowiadajg tym referen-
cyjnym. Na koniec liczona jest Srednia ze wszystkich warto$ci i otrzymany wynik sta-
nowi warto$¢ funkcji straty dla catego tekstu.
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6.6. Doszkalanie LLM

Doszkalanie modelu (fine-tuning) to proces, ktory polega na dostosowaniu juz
wczesniej wytrenowanego modelu do specyficznego kontekstu dziedzinowego
[Devliniin., 2019], w ktérym to kontekscie model bedzie wykorzystywany (np. wcze-
$niej wskazywane przyktady z prawa lub medycyny). W przypadku LLM doszkalanie
modelu polega na zmianie cz¢sci jego parametréw w celu dostosowania wydajnosci
do konkretnego kontekstu bez koniecznosci trenowania catego modelu od poczat-
ku [Khandare, 2023]. Jest to szczegdlnie uzyteczne, gdy zadanie, w ramach ktérego
model ma by¢ wykorzystywany, r6zni sie od oryginalnego zadania, do ktérego zostat
przeznaczony. Istnieje natomiast kilka rodzajéw technik doszkalania modeli, wsréd
ktérych mozna wyréznic:
= calkowite doszkalanie modelu - polegajjce na trenowaniu calego modelu na pod-

stawie nowego zbioru danych; taki typ doszkalania wymaga znacznych naktadéw

mocy obliczeniowej oraz wystarczajaco duzego zbioru danych, na podstawie kt6-
rego trenowane beda wszystkie warstwy modelu;

= selektywne doszkalanie modelu - technika polegajaca na dostrojeniu tylko
wybranych warstw modelu, zwykle gérnych lub dolnych (inaczej: poczatkowych
badz koncowych); wymaga znacznie mniejszej mocy obliczeniowej w poréwna-
niu z catkowitym doszkalaniem modelu i jest uzywana w przypadku, gdy zadanie
docelowe jest zbiezne z pierwotnym zadaniem ogdlnego modelu;

= efektywne doszkalanie modelu (parameter-efficient fine-tuning, PEFT) — charakte-
ryzujace sie dodaniem matej warstwy nowych parametréw w celu dostosowania
modelu pod konkretne zadanie; pozostate parametry pozostaja niezmienne, co
zmniejsza potrzebng moc obliczeniowg;

= hybrydowe doszkalanie modelu - polegajace na polaczeniu réznych podejsé
doszkalania w celu zachowania cze$ci oryginalnych cech modelu z jednoczesnym
dodaniem nowych; proces doszkalania dzieli si¢ tutaj na kilka etapéw, w ktérych
raz trenowana jest wiecksza cze$¢ parametréw, a raz mniejsza; proces ten pozwala
na dostrojenie modelu do bardzo specyficznych zadan, nie pozbawiajac go jed-

noczes$nie jego podstawowych mozliwosci.

6.7. Przyktad doszkalania LLM

W ramach badania przeprowadzony zostat eksperyment numeryczny, polegajacy
na wykorzystaniu modelu BART opracowanego przez firme Facebook [Lewisiin.,2019].
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Celem eksperymentu byto sprawdzenie, w jaki spos6b doszkalanie modelu LLM
na wyspecjalizowanym zbiorze danych (artykuty medyczne) wptywa na jakos¢ gene-
rowanych tre$ci na innym ogélnym zbiorze danych (tu: zawierajacym artykuty z ser-
wisu internetowego telewizji CNN).

Dane medyczne zawieraly 20 tys. obserwacji w zbiorze treningowym, uzytych do
dotrenowania modelu i dodatkowych 1000 w zbiorze walidacyjnym. Sktadaty si¢ one
z abstraktéw biomedycznych i odpowiadajgcych im streszczen.

Tabela 6.4. Przyktad ohserwacii ze zbioru danych medycznych

Artykut Streszczenie

,Cardiovascular disease is the leading cause of death globally. While © “Medication adherence in cardiovascular
pharmacological advancements have improved the morbidity and mortality ~ © medicine”

¢ associated with cardiovascular disease, non-adherence to prescribed :

: treatment remains a significant barrier to improved...”

Zrédto: opracowanie wiasne.

Dane nazwane jako CNN zawieraty 1000 obserwacji uzytych do walidacji mode-
lu. Zbiér sktadat sie¢ z artykutéw ukazanych w CNN i odpowiadajacych im streszczen.

Tabela 6.5. Przykfad ohserwacii ze zbioru artykutow CNN

: Artykut Streszczenie
,The Palestinian Authority officially became the 123 rd member of the “Membership gives the ICC jurisdiction over
i International Criminal Court on Wednesday, a step that gives the court - alleged crimes committed in Palestinian

¢ jurisdiction over alleged crimes in Palestinian territories. The formal accession : territories since last June..."
- was marked with a ceremony at The Hague, in the Netherlands..." {

Zrédto: opracowanie wiasne.

Schemat przeprowadzonego eksperymentu numerycznego przedstawiono na rysun-
ku6.1.

W pracy zastosowano efektywne doszkalanie modelu - PEFT, przeprowadzone
w szeSciu iteracjach (epoch). Liczba parametréw modelu uzytego w eksperymencie
wynosi 139 641 600. Nastepnie zostalo dodane 221 184 parametry, co stanowi 0,16%
wszystkich parametréw modelu poczatkowego.

Srednie wartoéci btedéw na zbiorze walidacyjnym, odpowiednio dla danych
medycznych oraz danych CNN, uzyskane w oparciu na modelu doszkalanym na zbio-
rze medycznym, przedstawiono na rysunku 6.2 (wartosci liczbowe w zatgczniku A).
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Rysunek 6.1. Schemat eksperymentu numerycznego

Dane medyczne Dane CNN
T Ocena dziatania T
Pierwotny |
Model BART
Doszkalanie Model BART
modelu doszkolony
Dane medyczne ¢ i
Ocena modelu na Ocena modelu na
danych medycznych, danych CNN,
zhidr testowy zhidr testowy

Zrédto: opracowanie wiasne.,

Rysunek 6.2. Schemat eksperymentu numerycznego

2,22 3,395
2,20 3,390
218 3,385
8
S 28 3,800
3
kS
214 3,375
212 3370
210 3,365
0 1 2 3 4 5 6 7
lteracja
— Zhiér medyczny (0§ lewa) - - - Zbior CNN (0§ prawa)

Zrédto: opracowanie wiasne.
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Wraz z kazda iteracjg doszkalania uzyskiwano statystycznie lepsza jakos¢ modelu
na danych medycznych (linia ciggla na rysunku 6.2). Oznacza to, ze model genero-
wat lepszej jakoSci tekst w kontekscie medycznym, co jest zjawiskiem oczekiwanym:
doszkalajagc model w oparciu na specyficznych danych medycznych, oczekujemy, ze
bedzie on lepiej dziatat w tym konkretnym kontekscie dziedzinowym.

Interesujgcy jest jednak profil jakosci dzialania modelu dla danych zbioru CNN
(linia przerywana na rysunku 6.2). Obszar ten jest w duzej mierze niezalezny od
danych medycznych, obejmujac kwestie spoteczne, socjologiczne, prawne i ekono-
miczne, ktére co do zasady sg niezaleznym obszarem wzgledem medycyny’. Z kazda
iteracjg doszkalania modelu BART, w oparciu na danych medycznych, ten sam model
wykorzystywany do analizy danych ze zbioru CNN uzyskiwat coraz wyzszy btad vali-
dation loss. Obserwowany jest statystyczny spadek jakoSci dziatania modelu w opar-
ciu na danych CNN.

Zidentyfikowana w pracy anomalia to szerzej znane w literaturze katastrofalne
zapominanie (catastrophic forgetting), zwigzane z sytuacja, w ktérej model poprzez
doszkalanie w jednym obszarze wykorzystania (tu: dane medyczne) traci doktadnosé
dziatania w innym niezaleznym obszarze (tu: dane CNN) [Kirkpatrick i in., 2017].
Zjawisko to jest obecne m.in. w przypadku architektur modeli opartych na sieciach
neuronowych. Za gtéwna przyczyne wspomnianej anomalii wskazuje sie mechanizm
dostosowywania wag modelu. Podczas doszkalania modelu w danym obszarze poten-
cjalnie wszystkie wagi modelu mogg ulegaé nieznacznym modyfikacjom, co nieko-
rzystnie wptywa na jakos¢ dziatania modelu na innych obszarach wykorzystania.

Podsumowanie

Rozwdj ekonometrii - jak zaznaczono we wstepie, dziedziny lezacej pomiedzy
matematyka, statystyka oraz informatyka — wigzat sie na poczatku z paradygmatem
modelowania parametrycznego (tj. modelami o zadanej postaci funkcyjnej), a pézniej
z przejSciem na modele nieparametryczne. Przykladem klasy modeli nieparametrycz-
nych sa sztuczne sieci neuronowe. Poczatkowe wykorzystanie tych modeli, skutkujace
poprawa wzgledem wczesniejszych podejs¢ w obszarze jakosci generowanych pro-

5 Autorzy dostrzegaja zwigzki miedzy kwestiami spotecznymi, socjologicznymi, prawnymi lub wskaza-
niami ekonomicznymi a medycyna; niemniej dane zbioru CNN odnosza si¢ do kwestii medycznych
wylacznie powierzchownie, nie traktujac tego jako gtéwnego obszaru zainteresowar. Dla uproszczenia
wywodu przyjeto, ze zagadnienia objete w danych CNN sg niezalezne od zagadnien objetych danymi
medycznymi.
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gnoz z modeli, przyniosto dalszy rozwéj i zaawansowanie wykorzystywanych podejsé.
Obecnie rozwoj tego obszaru widac¢ na przyktadzie popularnych, dostepnych dla uzyt-
kownikéw nietechnicznych, duzych modeli jezykowych.

Ponadto obserwujemy coraz wigksza popularyzacje wykorzystania modeli LLM
w wymiarze zaré6wno horyzontalnym: rézne konteksty dziedzinowe, jak réwniez
wertykalnym: szczeg6towe i specjalistyczne zadania do wykonywania. Jednoczesnie
budowa modelu LLM od podstaw jest z reguty ekonomicznie nieuzasadniona z punk-
tu widzenia pojedynczego przedsigbiorstwa.

Taki stan rzeczy powoduje, ze przedsigbiorstwa coraz cze$ciej wykorzystuja mode-
le jezykowe — wytrenowane i udostepnione przez duze firmy technologiczne. W celu
dostosowania sposobu dziatania tych modeli z charakteru ogélnego na wyspecjali-
zowany, dziedzinowy wypracowano szereg metod ich doszkalania.

Proces doszkalania, w zaleznosci od rodzaju, moze dotyczy¢ wszystkich lub wybra-
nych parametréw sieci neuronowej. Co wigcej, wystepuja podejscia (takie zastosowano
w pracy), w ktérych - zamiast modyfikacji istniejacych parametréw - do sieci neuro-
nowej wprowadza si¢ dodatkowe warstwy i to na nich wykonywana jest modyfikacja.

Doszkalanie modeli powoduje poprawe doktadnosci dziatania modelu w dzie-
dzinie, w ktoérej byt doszkalany. W pracy wskazano jednak scenariusz, w ktérym obok
poprawy doktadnosci dziatania modelu w konkretnej dziedzinie, w jakiej wykonywa-
ne bylo doszkalanie, zaobserwowano réwniez pogorszenie oceny dzialania modeli
w innej dziedzinie. Omawiany proces w literaturze nazywa si¢ katastrofalnym zapo-
minaniem i zwigzany jest z naruszeniem warto$ci wag modelu, odpowiadajacych za
obszar, w ktorym model nie byt doszkalany (w przykladzie byly to dane CNN).

Obserwacja poczyniona w pracy dotyczy faktu, ze przejScie z modeli ogblnych
na modele domenowo wyspecjalizowane, poprzez procedure doszkalania modelu,
moze powodowac nieplanowane pogorszenie dzialania tego modelu w obszarze nieza-
leznym. Oznaczac¢ to moze, ze wraz z postepujacym doszkalaniem modelu w konkret-
nym obszarze zastosowan, model ten powinien by¢ réwniez wytaczany z pozostatych

niezaleznych zastosowan.
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Zatacznik

Tabela Z6.1. Strata walidacyjna modelu dotrenowanego na danych medycznych
i ocenionego na danych medycznych

Iteracja Srednia Odchylenie standardowe Przedziat ufnosci
1 220021 0,00005 0,00003
2 216601 0,00299 0,00185
3 214860 0,00220 0,00137
4 218749 0,00410 0,00254
5 218114 0,00419 0,00260
b 212980 0,00336 0,00208

Zrédto: opracowanie wiasne.,

Tabela Z6.2. Strata walidacyjna modelu dotrenowanego na danych medycznych
i ocenionego na artykutach z CNN

Iteracja Srednia Odchylenie standardowe Przedziat ufnosci
o 337608 0,00459 0,00285
104 2 337384 0,00874 0,00542
3 337749 0,00773 0,00479
4 33831 0,00634 0,00393
5 338535 0,00701 0,00435
6 338530 0,00631 0,00391

Zrédto: opracowanie wiasne.,
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