
Streszczenie
Apache Spark to platforma do przetwarzania danych w trybie wsadowym oraz w czasie 
rzeczywistym. Ważne wyzwanie, zwłaszcza w trybie przesyłania w czasie rzeczywistym, 
stanowi zapewnienie wysokiej przepustowości i niskiego opóźnienia. Jest to szczegól-
nie ważne w przypadku systemów AI działających w czasie rzeczywistym. W niniejszym 
rozdziale przedstawiamy serię eksperymentów mających na celu identyfikację parame-
trów i konfiguracji Apache Spark, które mogą zmniejszyć opóźnienia w transformacji 
danych. W badaniu zweryfikowaliśmy najpopularniejsze transformacje danych: gru-
powanie i filtrowanie. Kluczowe ustalenia wskazują, że wybór klastra jednowęzłowego 
może zapewnić korzystny kompromis i osiągnięcie równowagi między wydajnością 
przesyłania strumieniowego a efektywnością wykorzystania zasobów.
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Wprowadzenie

Dane w czasie rzeczywistym odnoszą się do informacji, które są gromadzone, 
przetwarzane i wykorzystywane natychmiast po ich wygenerowaniu, umożliwiając 
działanie w oparciu na najnowszych informacjach. Technologia Apache Spark jest 
obecnie standardem w zakresie masowego przetwarzania danych. To platforma open 
source do równoległego przetwarzania danych w pamięci operacyjnej [Apache Spark, 
2020b]. Apache Spark jest także używany w usługach wiodących dostawców chmu-
rowych, takich jak Amazon EMR [Amazon, 2019], Databricks [Databricks, 2023] lub 
Google Dataproc [Google Cloud, 2022]. Spark oferuje ujednolicony system do obsługi 
dużych zbiorów danych, algorytmów uczenia maszynowego i możliwość przetwarzania 
danych w czasie rzeczywistym. Działa na jednym serwerze lub w klastrach złożonych 
z wielu węzłów (serwerów). Moduł Spark Streaming jest komponentem platformy 
Spark, służącym do przetwarzania danych w czasie rzeczywistym.

Inną technologią, powszechnie używaną do przesyłania strumieniowego danych, 
jest Apache Kafka. Podczas gdy Spark Streaming oferuje przetwarzanie danych i moż-
liwości analityczne, Apache Kafka jest rozproszoną platformą przesyłania strumienio-
wego. Integracja obu platform upraszcza architekturę dla analiz w czasie rzeczywistym 
[Salloum, Dautov, Chen, Peng, Huang, 2016].

Spark działa w rozproszonym środowisku, w którym dane i zadania obliczeniowe 
są rozproszone na wielu serwerach [serwery w klastrze nazywa się potocznie węzła-
mi (nodes)]. Architektura ta powoduje wyzwania w diagnozowaniu wąskich gardeł 
wydajności, ponieważ problemy mogą wynikać z różnych przyczyn, takich jak opóź-
nienie sieci, nierównomierna dystrybucja danych lub nieefektywna alokacja zaso-
bów. Ponadto w Spark Streaming wyzwania te zostają spotęgowane przez potrzebę 
niskich opóźnień transformacji danych [Karau, Warren, 2017]. Zarządzanie prze-
twarzaniem w trybie strumieniowym wymaga utrzymywania i aktualizowania stanu 
danych w różnych partiach danych oraz różnych punktach czasu. Ponadto optyma-
lizacja wykorzystania zasobów (takich jak pamięć i procesor) staje się bardziej zło-
żona, ponieważ system musi znaleźć równowagę między przetwarzaniem o niskim 
opóźnieniu a ograniczeniami zasobów.

Co więcej, narzędzia diagnostyczne i metryki do monitorowania wydajności 
w Spark wymagają zrozumienia wewnętrznej architektury platformy. Przykładowo, 
prezentowane w Spark parametry diagnostyczne, takie jak wykorzystanie pamięci 
czy procesorów, nie dają jasnej wiedzy, w jaki sposób dane odczyty przekładają się 
na opóźnienia. Ten poziom wiedzy specjalistycznej nie zawsze jest łatwo dostępny. 
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Czynniki te sprawiają, że zarządzanie wydajnością w Spark, szczególnie w module 
Spark Streaming, to wymagające i złożone zadanie.

Celem rozdziału jest identyfikacja możliwości zwiększenia wydajności platformy 
Apache Spark w wybranych scenariuszach transformacji danych w czasie rzeczywi-
stym. Przetwarzanie danych w czasie rzeczywistym ma duże znaczenie dla systemów 
sztucznej inteligencji, ponieważ modele AI mogą wówczas budować swoje predykcje 
w oparciu na najnowszych informacjach. Udostępnianie do modeli AI danych w czasie 
rzeczywistym pozwala na ciągłe douczanie modeli, uwzględniając nowe zdarzenia.

W badaniu skupiamy się wyłącznie na module Spark Streaming. Ponadto nie bada-
my wyłącznie technologii Spark, ale także jej integrację ze strumieniami Apache Kafka; 
kontrolujemy szybkość przepływu danych, co pozwala zweryfikować, w jaki sposób 
parametry Spark działają dla różnych szybkości transmisji danych.

9.1. Technologia Apache Spark

Zwykle klaster Apache Spark składa się z serwera głównego (węzła) i wielu węzłów 
roboczych. W klastrze działają dwa typy procesów: sterownik (driver) i wykonaw-
ca (executor). Proces sterownika to główna jednostka przetwarzania danych; dzia-
ła na węźle głównym i odpowiada za pozyskiwanie zasobów sprzętowych z klastra. 
Proces sterownika rozpoczyna się od przetłumaczenia aplikacji (kodu źródłowego) 
na zadania Spark. Następnie każde zadanie jest tłumaczone na logiczny plan wyko-
nania, reprezentowany jako skierowany graf acykliczny (DAG). Wyjątek stanowią kla-
stry jednowęzłowe, w których zarówno proces sterownika, jak i proces wykonawczy 
są uruchamiane na serwerze głównym. Każdy wykonawca ma wyłączne zasoby sprzę-
towe do obsługi zadań przetwarzania [Chao, Shi, Gao, Luo, Wang, 2018].

Transformacje danych w Apache Spark to procesy, które przekształcają zbiór 
danych z jednej formy w drugą. Reprezentacją struktury danych są w Spark tzw. ramki 
danych (data frame), które przypominają swoją budową tabelę (posiadają kolumny 
o określonych typach, zaś grupy kolumn są zorganizowane w wierszach).

Spark oferuje możliwość stosowania powszechnie używanych języków progra-
mowania, takich jak: Java, Python, SQL, R i Scala, oraz przetwarzania danych z róż-
nych źródeł i w różnych formatach, takich jak płaskie pliki CSV, Parquet, Avro, ORC, 
JSON itp. Posiada kilka wbudowanych modułów (poza Spark Streaming), które służą 
do przetwarzania danych w zależności od celu, takich jak: Spark SQL przetwarzający 
dane strukturalne, MLib – biblioteka uczenia maszynowego czy GraphX ​​przetwarza-
jący grafy (rysunek 9.1).
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Rysunek 9.1. Komponenty Apache Spark
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Źródło: Damji, Wenig, Das, Lee [2020].

Informacje dotyczące głównych cech Apache Spark zostały zawarte w następują-
cych stwierdzeniach [Apache Spark, 2020a]:
1.	 Dane w Spark są partycjonowane przy użyciu tzw. partycji haszujących. Partycjo-

nowanie haszujące próbuje równomiernie rozłożyć dane na podstawie klucza 
[Chambers, Zaharia, 2018; Damji et al., 2020].

2.	 Spark buforuje dane w pamięci operacyjnej na wielu węzłach.
3.	 Dzięki zastosowaniu ramek danych Spark zapewnia wysoką dostępność w przy-

padku awarii. Jeśli dany węzeł ulegnie awarii, Spark może ponownie obliczyć utra-
coną partycję z oryginalnego zestawu danych.

4.	 Spark jest wysoce skalowalny, z możliwością obsługi petabajtów (milionów giga-
bajtów) danych na wielu węzłach.
Zarządzanie wydajnością klastra Spark jest złożone ze względu na rozproszoną 

naturę Spark i potrzebę optymalizacji na różnych warstwach, w tym partycjonowania 
danych, serializacji i zarządzania pamięcią. Każda warstwa ma własny zestaw parame-
trów, które należy dostroić pod kątem zgodności z innymi. Spark oferuje ponad 180 
parametrów konfiguracyjnych [Apache Spark, 2020a], z których kilkadziesiąt doty-
czy dostrajania wydajności.

9.2. Badania powiązane

Badania wydajności Apache Spark skupiają się na dwóch strumieniach badaw-
czych: ocenie wydajności [Wang, Khan, 2015] i przewidywaniu (predykcji) wydajności 
[Cheng, Ying, Wang, 2021]. Strumienie te jednak koncentrują się głównie na prze-
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twarzaniu wsadowym. Strumień badania wydajności Spark dotyczy porównywania 
wydajności technologii przy wykorzystaniu testów porównawczych i dostrajania 
parametrów Spark. Popularnymi scenariuszami testów porównawczych wydajności 
są WordCount i Terasort [IBM, 2021]. Na przykład Ahmed, Barczak, Rashid i Susnjak 
[2021] wykonali testy oparte na tych scenariuszach dla 18 parametrów Spark. Kluczo-
wym odkryciem było to, że Spark ma wyższą wydajność w porównaniu z technologią 
Hadoop MapReduce. Spark okazał się szybszy dwukrotnie w teście WordCount i czter-
nastokrotnie w przypadku TeraSort. Naukowcy wykorzystują również kompleksową 
platformę testową HiBench [Ahmed et al., 2021] – zunifikowaną do oceny wydajno-
ści systemów intensywnie wykorzystujących dane. Samadi, Zbakh i Tadonki [2018] 
przeprowadzili porównanie technologii Hadoop MapReduce z technologią Spark, 
korzystając z tej platformy. Okazało się, że Spark odznacza się większym wykorzy-
staniem procesora i operacji wejścia/wyjścia, a jednocześnie wyższą wydajnością niż 
MapReduce (szczególnie w przypadku obsługi większej ilości danych). W tym nur-
cie badawczym istnieją również badania bezpośrednio skupiające się na wydajności 
algorytmów AI działających na Spark [Mavridis, Karatza, 2017].

Nurt badawczy związany z predykcją wydajności Spark jest np. reprezentowany 
przez Petridisa, Gounarisa i Torresa [2017]. Badacze wskazują, w jaki sposób zastąpić 
domyślne wartości parametrów wartościami oszacowanymi przez modele predyk-
cyjne. Badanie koncentrowało się głównie na algorytmach sortowania, kompresji 
i zarządzaniu pamięcią. Dowiedziono w nim, iż największy wpływ na jakość predyk-
cji wydajności Apache Spark ma parametr spark.shuffle.compress.

Inne podejście do predykcji i dostrajania parametrów związanych z wydajnością 
zostało wprowadzone przez Petrova, Butakova, Nasonova i Melnika [2018]. W arty-
kule zaproponowano adaptacyjny model wydajności, dedykowany skalowaniu zaso-
bów systemowych w zależności od wymagań dotyczących opóźnień. Przeprowadzono 
zestaw eksperymentów, który pozwolił na uzyskanie 66% poprawy wydajności.

9.3. Zakres eksperymentu

Eksperyment polegał na uruchomieniu serii testów przetwarzania Spark Streaming 
zintegrowanych z Apache Kafka. Zadania Spark obejmowały połączenie z określonym 
strumieniem Kafka – tematem (topic), a następnie zebranie danych i przeprowadzenie 
transformacji. Eksperyment został przygotowany w języku programowania Python. 
Kody źródłowe umieszczono w publicznym repozytorium Github. Utworzono dwa 
programy: program producenta, który wysyłał dane do tematu Kafka z określoną 
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prędkością, oraz program konsumenta, który odczytywał dane z tematu, wykonywał 
odpowiednie transformacje i zapisywał wyniki. Przygotowaliśmy szereg scenariuszy 
testowych – każdy z nich obejmuje połączenie Apache Spark z tematem Kafka, pobranie 
przychodzących danych i ich transformację. Scenariusze zostały zdefiniowane przez:

	§ konfigurację prędkości transmisji danych (600, 1200, 1800 i 3000 rekordów na 
minutę);

	§ konfigurację liczby partycji w temacie Kafka (1, 2 lub 3);
	§ konfigurację sprzętową klastra Apache Spark (liczba węzłów);
	§ typ transformacji danych (filtrowanie i grupowanie);
	§ ustawienia parametrów Spark.

Wszystkie scenariusze testowe zostały uruchomione w infrastrukturze usług Ama-
zon EC2. Platforma Apache Spark została dostarczona przez środowisko Databricks. 
Wykorzystaliśmy Structured Streaming API w Apache Spark. Każdy z wykonawców 
w klastrach miał 4 rdzenie procesora i 30,5 GB pamięci RAM.

9.3.1. Przepływ danych

Koncepcję eksperymentu i przepływ danych przedstawiono na rysunku 9.2. Pro-
ducent generuje dane w pętli, na podstawie konfiguracji zapisanej w pliku. Po stronie 
Spark konsument łączy się online ze strumieniem danych, po czym odczytuje dane 
z określonego tematu bezpośrednio do ramki danych. Następnie dane są transfor-
mowane.

Na każdym etapie transmisji i transformacji danych konsument rejestruje infor-
macje, zawierające znacznik czasu na danym etapie. Posiadając dane znacznika czasu 
na każdym etapie przetwarzania danych, może zaś obliczyć opóźnienia (latencje) dla 
każdego kroku. Następnie obliczone opóźnienie jest zapisywane w repozytorium plików, 
wraz z konfiguracją Spark i Kafka oraz stanem infrastruktury sprzętowej klastra Spark.

Podczas badania przeanalizowaliśmy wszystkie parametry Apache Spark, aby 
wybrać te, które (zgodnie z dokumentacją) mogą mieć wpływ na wydajność strumie-
nia danych. Następnie podczas oceny zidentyfikowaliśmy parametry, mające najwięk-
szy wpływ na wydajność przetwarzania danych.
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9.3.2. Ocena eksperymentu

Eksperyment został przeprowadzony przy stałej prędkości danych podczas dane-
go testu. Z tego powodu utrzymaliśmy domyślną konfigurację Spark dla parametrów: 
maxOffsetsPerTrigger i minOffsetsPerTrigger, które w obu przypadkach były ustawio-
ne na wartość none. Wskaźnikiem wydajności była najniższa latencja, ale braliśmy 
również pod uwagę efektywne wykorzystanie zasobów.

Skonfigurowaliśmy skrypt inicjalizacyjny, który kontroluje częstotliwość zbiera-
nia logów. Następnie w aplikacji Spark ustawiliśmy parametr konfiguracyjny: spark.
sql.streaming.metricsEnabled na true, aby włączyć gromadzenie logów. Logi metryk 
były zapisywane w pięciosekundowych odstępach. Biorąc pod uwagę wszystkie kom-
binacje scenariuszy, warianty prędkości transmisji i parametry, obliczyliśmy, że cały 
eksperyment trwał ponad 40 godzin.

Rysunek 9.3. �Średnia latencja dla grupowania przy różnych ustawieniach parametru liczby 
partycji przetasowania danych
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Źródło: opracowanie własne.

Rysunek 9.3 przedstawia wyniki dla scenariuszy z grupowaniem z różną konfigu-
racją parametru liczby partycji przetasowania danych (shuffle partitions): 200 (domyśl-
nie) lub 8. Przetasowanie danych jest istotne dla transformacji takich jak grupowanie 
i oznacza, że uzyskanie ostatecznego wyniku wymaga przemieszania ich między par-
tycjami Spark. Natomiast transformacje takie jak filtrowanie są wykonywane bez prze-
tasowania danych, dlatego zmiana konfiguracji tego parametru nie wpływa na testy 
z filtrowaniem. Wykres pokazuje znaczący spadek latencji przy zmniejszonej liczbie 
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partycji przetasowania danych. Spadki latencji stają się mniejsze wraz ze wzrostem 
liczby wykonawców w klastrze. Niemniej jednak najniższa średnia latencja występuje 
dla klastra jednowęzłowego przy ustawieniu ośmiu partycji przetasowania danych. 
Dodatkowo poddaliśmy analizie wielkość próby i odchylenie standardowe dla sce-
nariuszy przedstawionych na rysunku 9.3. Dane zebrane w tabeli 9.1 pokazują rela-
tywnie duże liczności prób, przy przeważająco niskich odchyleniach standardowych. 
Biorąc pod uwagę tę analizę, wykluczyliśmy z dalszych testów dane oparte na domyśl-
nej konfiguracji liczby partycji przetasowania danych (200) ze względu na wyższe 
odchylenie standardowe.

Tabela 9.1. �Liczebność prób i odchylenie standardowe dla danych zaprezentowanych 
na rysunku 9.3

Liczba wykonawców Partycje przetasowania Liczebność próby Odchylenie standardowe

0 8 2123 1,40

0 200 3463 3,66

2 8 2132 0,52

2 200 2046 2,25

4 8 2309 0,82

4 200 2266 1,91

8 8 2128 0,42

8 200 2104 0,84

Źródło: opracowanie własne.

Rysunek 9.4 przedstawia średnią latencję dla obu transformacji danych w zależ-
ności od liczby wykonawców w klastrze. Dla każdej wielkości klastra średnia latencja 
jest konsekwentnie niższa przy wykonywaniu filtrowania w porównaniu z grupowa-
niem. Jest to związane z dwoma czynnikami. Po pierwsze, grupowanie jest szeroką 
transformacją i wymaga przetasowania danych. Po drugie, grupowanie jest również 
transformacją z pamięcią stanu (stateful transformation), co oznacza, że pomiędzy 
kolejnymi wsadami danych przechowywany jest ich stan w pamięci. Wykres wskazuje 
również, że najlepsza średnia latencja występuje dla klastra jednowęzłowego przy gru-
powaniu oraz dla klastra jednowęzłowego i klastra z dwoma wykonawcami przy fil-
trowaniu. Dla obu transformacji największy klaster ma najwyższą średnią latencję.

Rysunek 9.4 sugeruje również, że klaster jednowęzłowy może stanowić wystarcza-
jącą infrastrukturę dla testowanych scenariuszy. Aby potwierdzić to założenie, potrzeb-
na jest bardziej szczegółowa analiza danych. Dlatego po analizie średniej latencji dla 
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transformacji danych dla danej wielkości klastra zbadaliśmy średnią latencję dla każ-
dego testu. Poszczególne testy różnią się od siebie na podstawie różnych konfigura-
cji strumienia, takich jak rozmiar wsadu danych (batch size) lub liczba partycji Kafki.

Rysunek 9.4. Średnia latencja dla grupowania i filtrowania
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Źródło: opracowanie własne.

Tabela 9.2. Najlepsza i najgorsza latencja dla każdego scenariusza

Transformacja
Prędkość 

przepływu 
danych

Najlepsza średnia latencja Najgorsza średnia latencja

liczba wykonawców
średnia latencja 

w sekundach
liczba wykonawców

średnia latencja 
w sekundach

Filtrowanie 600 4 1,72 8 10,19

Filtrowanie 1200 2 1,81 4 4,16

Filtrowanie 1800 0 1,79 4 5,05

Filtrowanie 3000 4 1,60 8 5,17

Grupowanie 600 4 2,34 2 4,24

Grupowanie 1200 4 2,66 4 3,51

Grupowanie 1800 0 2,59 4 3,89

Grupowanie 3000 4 2,43 0 3,60

Źródło: opracowanie własne.

Wybór najlepszych i najgorszych wyników dla każdego scenariusza przedsta-
wiono w tabeli 9.2. Średnia latencja dla optymalnej konfiguracji waha się od 1,5 do 
2,7 sekundy, a dla najgorszej konfiguracji od 3,5 do nawet 10 sekund. Dla dwóch 
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z ośmiu scenariuszy (oba przy prędkości przepływu danych 1800) klaster jednowę-
złowy wykazuje najlepszą średnią latencję.

Dla pozostałych scenariuszy (dla prędkości 600, 1200 i 3000) przeanalizowaliśmy 
najlepszą średnią latencję dla pojedynczego testu przeprowadzonego na klastrze jed-
nowęzłowym, aby sprawdzić, jak dokonać jego porównania z klastrem, który uzyskał 
najlepsze rezultaty. Tabela 9.3 przedstawia porównanie najlepszej średniej latencji dla 
pojedynczego testu wykonanego na wygrywającym klastrze z najlepszą średnią laten-
cją dla pojedynczego testu przeprowadzonego na klastrze jednowęzłowym – obydwa 
dla tego samego scenariusza.

Ostatnia kolumna w tabeli 9.3 pokazuje różnicę między średnią latencją najlep-
szego testu wykonanego na klastrze jednowęzłowym a średnią latencją testu przepro-
wadzonego na wygrywającym klastrze. Różnica jest nieistotna dla połowy scenariuszy, 
a dla pozostałych wynosi mniej niż 500 milisekund. W dalszym ciągu jest to zgod-
ne z naszym założeniem, aby unikać nadmiernego rozbudowywania infrastruktury.

Tabela 9.3. �Najlepsza średnia latencja dla klastra wygrywającego oraz dla klastra jednowęzłowego

Transformacja
Prędkość 

przepływu 
danych

Liczba 
wykonawców

Najlepsza średnia 
latencja w sekundach dla 
wygrywającego klastra

Najlepsza średnia latencja 
w sekundach dla klastra 

jednowęzłowego

Różnica 
w sekundach

Filtrowanie 600 4 1,72 1,96 0,24

Filtrowanie 1200 2 1,81 1,87 0,06

Filtrowanie 1800 0 1,79 nie dotyczy nie dotyczy

Filtrowanie 3000 4 1,60 1,93 0,33

Grupowanie 600 4 2,34 2,60 0,26

Grupowanie 1200 4 2,66 2,67 0,01

Grupowanie 1800 0 2,59 nie dotyczy nie dotyczy

Grupowanie 3000 4 2,43 2,48 0,05

Źródło: opracowanie własne.

W kolejnym kroku poddaliśmy analizie rozkład danych dotyczących latencji dla 
każdego testu. Rysunki 9.5 i 9.6 pokazują rozkład latencji odpowiednio dla scenariu-
szy z filtrowaniem i grupowaniem. Każdy rysunek obejmuje tylko te scenariusze, dla 
których klaster jednowęzłowy nie osiągnął najlepszego rezultatu (scenariusze dla 
prędkości: 600, 1200 i 3000 rekordów na minutę). Dla każdej prędkości przepływu 
danych przedstawiono dwa wykresy pudełkowe. Wykres po lewej stronie przedstawia 
rozkład danych dla testu przeprowadzonego na wygrywającym klastrze, a po prawej – 
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rozkład latencji dla testu przeprowadzonego na najlepiej skonfigurowanym klastrze 
jednowęzłowym. Znak „x” oznacza średnią latencję.

Testy przeprowadzone na klastrze jednowęzłowym wykazują szerszy rozkład 
danych, co może wskazywać, że infrastruktura jest mniej stabilna. Jednak w przy-
padku scenariuszy z filtrowaniem 75% danych nadal oscyluje poniżej 2 sekund. Co 
więcej, w przypadku dwóch scenariuszy z grupowaniem trzeci kwartyl rozkładu jest 
tylko nieznacznie wyższy od tych dla wygrywających klastrów.

Rysunek 9.5. �Rozkład danych najlepszej średniej latencji dla filtrowania – zestawienie najlepszej 
średniej latencji ogółem z najlepszą średnią latencją dla klastra jednowęzłowego 
dla danej prędkości
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Źródło: opracowanie własne.

Rysunek 9.6. �Rozkład danych najlepszej średniej latencji dla grupowania – zestawienie najlepszej 
średniej latencji ogółem z najlepszą średnią latencją dla klastra jednowęzłowego 
dla danej prędkości
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Najgorszy wynik odnotowano dla scenariusza z grupowaniem i najniższą prędkością 
przepływu danych: trzeci kwartyl latencji zmienia się z 2,45 do 2,84 sekundy. W przy-
padku, gdy stała wydajność nie jest priorytetem, wyniki klastra jednowęzłowego mogą 
być zadowalające, a wybór mniejszego klastra może okazać się opłacalną strategią.

Rysunki 9.7 i 9.8 przedstawiają po cztery wykresy odpowiednio dla transformacji 
filtrowania i grupowania. Każdy z nich odpowiada innej prędkości przepływu danych. 
Z kolei każdy słupek przedstawia średnią latencję w zależności od wielkości wsadu 
danych po stronie konsumenta strumienia danych i liczby partycji Kafki. Wielkość 
wsadu danych (0,5 s, 1 s lub 2 s) wyzwala mikro-wsad w regularnych odstępach cza-
sowych i następuje przetwarzanie przyjętych danych we wsadzie. Ponadto po stronie 
producenta strumienia danych ustawiliśmy liczbę partycji Kafki.

Rysunek 9.7. Średnia latencja dla filtrowania dla klastra jednowęzłowego
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Źródło: opracowanie własne.

Rysunek 9.7 wskazuje, że w przypadku filtrowania latencja jest najniższa, gdy stru-
mienie odczytują dane z tematu Kafki z jedną partycją. Tendencja ta stopniowo male-
je przy wyższych prędkościach przepływu danych. Przy prędkości 3000 rekordów na 
minutę nie zaobserwowano znaczących zmian w latencji w różnych konfiguracjach. 
Natomiast w przypadku scenariuszy z grupowaniem zmiany latencji nie są tak spój-
ne pomiędzy różnymi prędkościami danych. Najwyraźniejszy trend jest widoczny 
przy najwyższej prędkości. Zmniejszenie liczby partycji Kafki i zmniejszenie rozmiaru 
wsadu danych po stronie konsumenta prowadzi do spadku latencji. Pojedyncza zmia-
na ustawień może zmniejszyć latencję nawet o 25%.
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Rysunek 9.8. Średnia latencja dla grupowania dla klastra jednowęzłowego
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Źródło: opracowanie własne.

Rysunek 9.9. Średnia latencja dla filtrowania dla klastra z 8
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Źródło: opracowanie własne.

Dodatkowo rysunek 9.9 przedstawia interesującą obserwację dla klastra z ośmioma 
wykonawcami w scenariuszach z filtrowaniem. Wskazuje on, że średnia latencja dla 
strumieni danych o wielkości wsadu danych co 500 milisekund oraz przy najniższej 
prędkości danych gwałtownie wzrasta do 10 sekund. Odpowiednia mediana laten-
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cji wynosi 4 sekundy, ale wciąż jest dwa razy wyższa niż mediana latencji dla innych 
rozmiarów wsadu przy tej samej prędkości danych. Jest to najwyższa średnia latencja 
zaobserwowana w badaniu. W przypadku rozdzielania mniejszej liczby rekordów stru-
mieniowych na większą liczbę węzłów może pojawić się znaczący narzut operacyjny.

Podsumowanie

W niniejszym artykule opisano przetestowanie różnych scenariuszy przetwarza-
nia danych przy użyciu różnych ustawień konfiguracyjnych. Przede wszystkim wyniki 
wskazują, że zmniejszenie liczby partycji przetasowania danych podczas grupowa-
nia może znacznie poprawić wydajność zapytań. Ponadto transformacje bez pamię-
ci stanu okazały się mniej czasochłonne niż transformacje z pamięcią stanu. Średnio 
klaster z ośmioma wykonawcami wypadł najgorzej. W poszczególnych testach klaster 
jednowęzłowy osiągnął najniższą średnią latencję dla niektórych scenariuszy przy 
optymalnej konfiguracji. Dla innych scenariuszy wykazano, że średnia latencja jest 
wyższa maksymalnie o 330 milisekund od latencji dla wygrywającego klastra. Te ana-
lizy wskazują, że wybór lżejszej infrastruktury może być opłacalny, nawet jeśli wiąże 
się to z większymi wahaniami latencji. Biorąc pod uwagę wyniki dla klastra jednowę-
złowego, zaleca się również zbadanie różnych wartości zarówno dla wielkości wsadu 
danych, jak i liczby partycji Kafki. Czynniki te mogą wpływać na latencję.

Wyniki badania mają na celu pomóc projektantom architektury w podejmowa-
niu optymalnych decyzji. Dostarczają wskazówek dotyczących wyboru odpowiedniej 
wielkości klastra Apache Spark i ustawień parametrów. Co więcej, zapewniają wgląd 
w możliwe skutki różnych scenariuszy strumieniowania. Optymalizując alokację 
zasobów i zadania przetwarzania w Apache Spark, organizacje mogą znacząco zre-
dukować zużycie zasobów obliczeniowych oraz czas potrzebny na wnioskowanie, co 
prowadzi do obniżenia kosztów operacyjnych. Ponadto Spark dostrojony pod kątem 
wydajności zapewnia elastyczność w tworzeniu i wdrażaniu modeli AI, wykorzystu-
jących dane w czasie rzeczywistym.

Rozważając wyniki tego badania, należy wziąć pod uwagę pewne ograniczenia. 
Po pierwsze, w naszym badaniu uwzględniliśmy dwa rodzaje transformacji: grupo-
wanie i filtrowanie. Inne transformacje, takie jak liczenie unikalnych wartości czy 
wykrywanie anomalii, z pewnością byłyby wartościowe. Po drugie, skupiliśmy się 
wyłącznie na technologiach Apache Spark i Apache Kafka. Ciekawe byłoby porówna-
nie tych technologii z innymi technologiami (np. systemami opartymi na chmurze).
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Kierunki dalszych badań wynikają z ograniczeń tego badania. Uwzględnienie 
bardziej złożonych transformacji i analiz lub rozszerzenie zakresu analizowanych 
technologii z pewnością zwiększyłoby praktyczną wartość badania.
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